Технологические процессы машиностроительного производства. Федераьное агентство по образованию

Кафедра технологии и организации машиностроительного производства

Дисциплина

"Технологические основы машиностроения" (ТОМ)

Конспект лекций

Э.П. Выскребенцев

Для студентов специальности "Металлургическое оборудование"

3-й курс дневного обучения

4-й курс заочного обучения

Основная

1. Ковшов А.Н. Технология машиностроения: учебник для вузов. – М.: Машиностроение, 1987

Дополнительная.

2. Горбацевич А.Ф., Шкред В.А. Курсовое проектирование по технологии машиностроения. – Минск: Вышейша школа, 1985.

3. Воробьев А.Н. Технология машиностроения и ремонт машин: Учебник. – М.: Высшая школа, 1981.

4. Корсаков В.С. Технология машиностроения. – М.: Машиностроения, 1987.

5. Справочник технолога-машиностроителя: в 2 кн. под. ред. Косиловой А. Г, – 3-е изд. – М.: Машиностроение, 1985.

6. Балабанов А.Н. Краткий справочник технолога-машиностроителя. – М.:

Изд. стандарт. 1992.

ВВЕДЕНИЕ 5

1 ТИПЫ ПРОИЗВОДСТВА, ФОРМЫ ОРГАНИЗАЦИИ И ВИДЫ

ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ 6

1.1 Типы производства 6

1.2 Виды технологических процессов 9

1.3 Структура технологического процесса и его основные

характеристики 11

1.3.1 Характеристики технологического процесса 15

1.4 Трудоёмкость технологической операции 16

1.5 Основные принципы технологического проектирования 21

2 ТОЧНОСТЬ МЕХАНИЧЕСКОЙ ОБРАБОТКИ 23

2.1 Точность и её определяющие факторы 23

3 ОСНОВЫ БАЗИРОВАНИЯ И БАЗЫ ЗАГОТОВКИ 27

3.1 Погрешность закрепления ε з, 36

3.2 Погрешность положения заготовки ε пр, вызываемая

неточностью приспособления 37

3.3 Базирование заготовки в приспособлении 38

4 КАЧЕСТВО ПОВЕРХНОСТИ ДЕТАЛЕЙ МАШИН И

ЗАГОТОВОК 41

4.1 Влияние технологических факторов на величину

шероховатости 41

4.2 Методы измерения и оценки качества поверхности 46

5 ЗАГОТОВКА ДЕТАЛЕЙ МАШИН 49

5.1 Выбор исходной заготовки и методов ее изготовления 49

5.2 Определение припусков на механическую обработку 51

6 ОСНОВНЫЕ ЭТАПЫ ПРОЕКТИРОВАНИЯ ТЕХНОЛОГИЧЕСКИХ

ПРОЦЕССОВ МЕХАНИЧЕСКОЙ ОБРАБОТКИ 60

6.1 Общие положения разработки технологических

процессов 60

6.2 Выбор технологического оборудования 63

6.З. Выбор технологической оснастки 64

6.4. Выбор средств контроля 65

6.5. Формы организации технологических процессов и их

разработка 65

6.6. Разработка групповых технологических процессов 67

6.7. Разработка типовых технологических процессов 70

7 ТЕХНОЛОГИЯ ИЗГОТОВЛЕНИЯ ТИПОВЫХ ДЕТАЛЕЙ 72

7.1 Технология производства валов 72

7.2 Технология производства корпусных деталей 82

7.2.1 Технологический маршрут обработки заготовок

корпусов 84

7.3 Технология производства цилиндров 92

7.4 Обработка зубчатых колёс 94

7.4.1 Конструктивные особенности и технические требования к зуб-

чатым колёсам 94

7.4.2 Обработка заготовок зубчатых колёс с центральным отверстием. 95

7.4.3 Нарезание зубьев 97

7.4.4 Изготовление крупногабаритных зубчатых колёс 100

7.4.5 Обработка заготовок до нарезания зубьев 101

7.5 Технология изготовления рычагов 102

8. ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ СБОРКИ 111

ВВЕДЕНИЕ

Технология машиностроения - наука, занимающаяся изучением закономерностей процессов изготовления машин, с целью использования этих закономерностей для обеспечения выпуска машин заданного качества, в установленном производственной программой количестве и при наименьших народнохозяйственных затратах.

Технология машиностроения развивалась с развитием крупной промышленности, накапливая соответствующие методы и приемы для изготовления машин. В прошлом технология машиностроения получила наибольшее развитие в оружейных мастерских и заводах, где изготовлялось оружие в больших количествах.

Так, на Тульском оружейном заводе еще в 1761 г. впервые в мире было разработано и внедрено изготовление взаимозаменяемых деталей и их контроль с помощью калибров.

Технология машиностроения создавалась трудами российских ученых: А.П. Соколовского, Б.С. Балакшина, В.М. Кована, B.C. Корсакова и др,

К технологии машиностроения относятся следующие области производства: технология литья; технология обработки давлением; технология сварки; технология механической обработки; технология сборки машин, т. е. технология машиностроения охватывает все этапы процесса изготовления машиностроительной продукции.

Однако под технологией машиностроения обычно понимают научную дисциплину, изучающую преимущественно процессы механической обработки заготовок и сборки машин к попутно затрагивающие вопросы выбора заготовок методы их изготовления. Это объясняется тем, что в машиностроении заданные формы деталей с требуемой точностью и качеством их поверхностей достигаются в основном механической обработкой. Сложность процесса механической обработки и физической природы, происходящих при этом явлений, вызвана трудностью изучения всего комплекса вопросов в пределах одной технологической дисциплины и обусловила образование нескольких таких дисциплин: резание металлов; режущие инструменты; металлорежущие станки; конструирование приспособлений; проектирование машиностроительных цехов и заводов; взаимозаменяемость, стандартизация и технические измерения; технология конструкционных материалов; автоматизация и механизация технологических процессов и др.

1 ТИПЫ ПРОИЗВОДСТВА, ФОРМЫ ОРГАНИЗАЦИИ И ВИДЫ

ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ

1.1 Типы производства

Тип производства - классификационная категория производства, выделяемая по признакам широты номенклатуры, регулярности, стабильности и объема выпуска изделий.

Объем выпуска изделий - количество изделий определенных наименования, типоразмера и исполнения, изготовленных или ремонтируемых объединением, предприятием или его подразделением в течение планируемого интервала времени.

Реализуют следующие типы производства: единичное; серийное; массовое. Одной из основных характеристик типа производства является коэффициент закрепления операций. Коэффициент закрепления операций – отношение числа всех различных технологических операций, выполненных или подлежащих выполнению в течение месяца, к числу рабочих мест.

Единичное производство - производство, характеризуемое широкой номенклатурой изготовляемых или ремонтируемых изделий и малым объемом выпуска изделий.

В единичном производстве изделия изготовляются единичными экземплярами, разнообразными по конструкции или размерам, причем повторяемость этих изделий редка или совсем отсутствует (турбостроение, судостроение). В этом типе производства, как правило, используется универсальные оборудование, приспособления и измерительный инструмент, рабочие имеют высокую квалификацию, сборка производится с использованием слесарнопригоночных работ, т. е. по месту и т. п. Станки располагаются по признаку однородности обработки, т. е. создаются участки станков, предназначенных для одного вида обработки - токарных, строгальных, фрезерных и др.

Коэффициент закрепления операций > 40.

Серийное производство - производство, характеризуемое ограниченной номенклатурой изделий, изготовляемых или ремонтируемых периодически повторяющимися партиями выпуска.

В зависимости от количества изделий в партии или серии и значение коэффициента закрепления операций различают мелкосерийное, среднесерийное и крупносерийное производство.

Коэффициент закрепления операций в соответствии со стандартом принимают равным:

а) для мелкосерийного производства - свыше 20 до 40 включительно;

б) для среднесерийного производства - свыше 10 до 20 включительно;

в) для крупносерийного производства - свыше 1 до 10 включительно.

Основные признаки серийного производства: станки применяются разнообразных типов: универсальные, сспециализированные, специальные, автоматизированные; кадры различной квалификации;

работа может производиться на настроенных станках; применяется и разметка, и специальные приспособления; сборка без пригонки и т. д.

Оборудование располагается в соответствии с предметной формой организации работы.

Станки располагаются в последовательности технологических операций для одной или нескольких деталей, требующиходинакового порядка выполнения операций. В той же последовательности, очевидно, образуется и движение деталей (так называемые, предметно-замкнутые участки). Обработка заготовок производится партиями. При этом время выполнения операций на отдельных станках может быть не согласовано с временем операций на других станках.

Изготовленные детали хранятся во время работы у станков и затем транспортируются всей партией.

Массовое производство - производство, характеризуемое узкой номенклатурой и большим объемом выпуска изделий, непрерывно изготовляемых или ремонтируемых в течение продолжительного времени.

Коэффициент закрепления операций для массового производства принимают равным единице.

Изготовление изделий на машиностроительных предприятиях осуществляется в результате производственного процесса.

Производственный процесс – это совокупность всех действий людей и орудий производства, необходимых на данном предприятии для изготовления или ремонта выпускаемых изделий. Производственный процесс в машиностроении охватывает подготовку средств производства и организацию обслуживания рабочих мест; получение и хранение материалов и полуфабрикатов; все стадии изготовления деталей машин; сборку изделий; транспортирование материалов, заготовок, деталей, готовых изделий и их элементов; технический контроль на всех стадиях производства; упаковку готовой продукции и другие действия, связанные с изготовлением выпускаемых изделий.

Важнейшим этапом производственного процесса является технологи ческая подготовка производства (ТПП), основным элементом которой является технологический процесс (ТП).

Технологический процесс – это часть производственного процесса, содержащая целенаправленные действия по изменению и/или определению состояния предмета труда (заготовки или изделия). Различают ТП изготовления исходных заготовок, термической обработки, механической (и другой) обработки заготовок, сборки изделий.

В ТП изготовления заготовок происходит превращение материала в исходные заготовки деталей машин заданных размеров и конфигурации различными методами. В процессе термической обработки происходят структурные превращения материала заготовок, изменяющие его свойства. При механической обработке происходит последовательное изменение состояния исходной заготовки (ее геометрических форм, размеров и количества поверхностей) до получения готовой детали. ТП сборки связан с образованием разъемных и неразъемных соединений составных частей изделий.

Для осуществления любого ТП необходимо применение совокупности орудий производства, называемых средствами технологического оснаще ния (СТО) – это технологическое оборудование (литейные машины, прессы, металлорежущие станки, печи, испытательные стенды и т. д.) и тех нологическая оснастка (режущие инструменты, приспособления, штампы, мерители и т. д.).

ТП выполняют на рабочих местах. Рабочее место – участок производственной площади, оборудованный в соответствии с выполняемой нанем работой.

Технологической операцией называют законченную часть ТП, выполняемую на одном рабочем месте. Операция охватывает все действия СТО и рабочих над одним или несколькими совместно обрабатываемыми или собираемыми объектами производства. При обработке на станках операция включает все действия рабочего, а также автоматические действия станка до момента снятия заготовки со станка и перехода к обработке другой заготовки.

Кроме технологических различают и вспомогательные операции: транспортирование, контроль, маркирование и др.

При выполнении ТП на предприятии заготовка или сборочная единица последовательно проходит по цехам и производственным участкам в соответствии с выполняемыми операциями. Указанную последовательность называют технологическим маршрутом, который может быть внутрицеховым и межцеховым.

Технологический переход – законченная часть технологической операции, выполняемая одними и теми же СТО при постоянных технологических режимах (t , s , п и др.). Технологические переходы могут быть простыми (обработка одним инструментом) или сложными (в работе одновременно участвуют несколько инструментов).

При обработке заготовок на станках с ЧПУ несколько поверхностей могут последовательно обрабатываться одним инструментом. В этом случае говорят, что указанная совокупность поверхностей обрабатывается в результате выполнения инструментального перехода.

Вспомогательный переход – это законченная часть технологической операции, состоящая из действий человека и/или оборудования, которые не сопровождаются изменением свойств предметов труда, но необходимы для выполнения технологического перехода (установка и закрепление заготовки, смена инструмента, изменение режимов обработки и др.).

Рабочий ход – законченная часть технологического перехода, состоящая из однократного перемещения инструмента относительно заготовки, сопровождаемого изменением формы, размеров, качества поверхности или свойств заготовки.

Установ – часть технологической операции, выполняемая при неизменном закреплении обрабатываемой заготовки или сборочной единицы.

Позиция – фиксированное положение, занимаемое неизменно закрепленной обрабатываемой заготовкой или собираемой сборочной единицей совместно с приспособлением относительно инструмента или неподвижных частей оборудования для выполнения определенной части операции. Смена позиций, выполняемая с помощью поворотных устройств и устройств линейных перемещений возможна, например, в технологических операциях, осуществляемых на оборудовании револьверного типа, агрегатных станках, автоматических линиях и т. д.

Рабочий прием – ручное действие рабочего по обслуживанию станка или агрегата, обеспечивающего выполнение технологического перехода или его части. Так, при выполнении вспомогательного перехода установки заготовки в приспособление необходимо последовательно выполнить следующие приемы: взять заготовку из тары, установить в приспособление и закрепить в нем.

Изготовление изделий машиностроения может быть осуществлено на основе единичного, типового или группового ТП. Единичный ТП проектируется и применяется для изготовления деталей одного наименования, типоразмера и исполнения, независимо от типа производства.

Типовой ТП характеризуется единством содержания и последовательности большинства технологических операций и переходов для группы изделий с общими конструктивными признаками. Типовой ТП используется либо как информационная основа при разработке рабочего ТП, либо как рабочий ТП при наличии всей необходимой информации для изготовления детали.

Групповой ТП используется для совместного изготовления или ремонта группы изделий различной конфигурации в конкретных условиях производства на специализированных рабочих местах. Принципиальное различие между типовыми и групповыми процессами заключается в следующем: типовая технология характеризуется общностью технологического маршрута, а групповая – общностью оборудования и оснастки, необходимых для выполнения определенной операции или полного изготовления детали.

По степени детализации ТП подразделяются на маршрутные, операционные и маршрутно-операционные.

В маршрутном ТП содержание операций излагается без указания переходов и режимов обработки.

Операционный ТП – это технологический процесс, выполняемый по документации, в которой содержание операций излагается с указанием переходов и режимов обработки.

Маршрутно-операционный ТП – это технологический процесс, выполняемый по документации, в которой содержание отдельных операций излагается без указания переходов и режимов обработки.

Анализ существующих и проектирование новых ТП должны выполняться с учетом типа организации производства, в которых они осуществляются. Различают три основных типа машиностроительного производства: массовое, серийное и единичное. В некоторых случаях серийное производство подразделяют на крупносерийное, среднесерийное и мелкосерийное. Основными факторами, определяющими тип организации производства в цехе, на участке, являются номенклатура изделий, программа выпуска и трудоемкость изготовления деталей.

Тип действующего производства определяется коэффициентом закреп ления операций

где О – число различных операций за один месяц;

Р – число рабочих мест, на которых выполняются различные операции.

Для массового производства
. Для крупносерийного производства
, для среднесерийного
, для мелкосерийного
. Для единичного производства
не регламентируется.

При проектировании процессов изготовления изделий серийность производства определяется по коэффициенту серийности

, (1.2)

где –такт выпуска изделий;

– среднее штучное время по операциям.

Такт выпуска – интервал времени, через который периодически производится выпуск изделий определенного наименования, типоразмера и исполнения, рассчитывается по формуле

, (1.3)

где действительный годовой фонд времени работы оборудо­вания за одну смену в часах;

т количество смен работы оборудования за сутки;

N годовая программа выпуска изделий, шт.

Для нахождения t ш.ср . необходимо либо выполнить нормирование по укрупненным нормам, либо использовать данные по трудоемкости существующей на производстве аналогичной детали.

Среднее штучное время рассчитывается по формуле

, (1.4)

где t ш. i штучное время i -й операции изготовления детали;

п число основных операций в маршруте.

По значению К с , рассчитанному по формуле (1.2), можно принять решение о типе производства. При К с ≤ 1 – массовое производство, 1 < К с ≤ 10 – крупносерийное, 10 < К с ≤ 20 – среднесерийное, 20 < К с ≤ 50 – мелкосерийное, К с > 50 – единичное производство.

Серийность производства оказывает существенное влияние на технологическую подготовку выпуска изделий.

В машиностроении применяют два метода работы: поточный и непоточный. Поточное производство характеризуется расположением СТО в последовательности выполнения операций ТП и определенным интервалом выпуска изделий (такта выпуска). В общем случае условием организации потока является кратность времени выполнения каждой операции такту выпуска, т.е. t ш. i / τ в = К (К = 1,2,3,...). Приведение длительности операций к указанному условию называют синхронизацией.

Производительность труда, соответствующая выделенному производственному участку (линии, цеху), определяется ритмом выпуска. Ритм выпуска – количество изделий определенного наименования, типоразмера и исполнения, выпускаемое в единицу времени. Обеспечение заданного ритма выпуска изделий при поточном методе работы в массовом и крупносерийном производстве является важнейшей задачей при проектировании ТП.

Организация производства по поточному методу обеспечивает повышение производительности труда, уменьшение производственного цикла и объема незавершенного производства, предусматривает применение высокопроизводительного оборудования и комплексной автоматизации изготовления деталей, включая термическую обработку, нанесение покрытий, мойку, контроль и т. п.

В серийном производстве заготовки перемещаются по рабочим местам партиями. Партией называют количество заготовок или деталей одного наименования и типоразмера, которые запускаются в производство или подаются на сборку.

Величина оптимальной партии рассчитывается по формуле

n = N К/Ф , (1.5)

где N годовая программа с запчастями, шт;

К число дней, на которые необходимо иметь запас деталей наскладе (2...10 дней);

Ф – число рабочих дней в году.

Станок, закончивший обработку партии заготовок переналаживают на другую операцию. Величина партии деталей зависит от номенклатуры изделий, от годовой программы, от срока заказа, длительности обработки и сборки, сложности, наличия материалов и других факторов. С учетом этих факторов расчетная величина партии может быть принята другой.

В серийном производстве для повышения загрузки оборудования применяют переменно-поточные (серийно-поточные) игрупповые линии. При переменно-поточной обработке за каждым станком линии закреплено выполнение нескольких операций для технологично и конструктивно однотипных деталей, которые обрабатывают попеременно. Приспособления переменно-поточных линий конструируют так, чтобы в них можно былоустанавливать всю закрепленную группу заготовок.

В групповых поточных линиях каждый станок выполняет операции разных технологических маршрутов. При переходе к обработке следующих деталей производится подналадка станка (смена цанги, фиксатора, сверла и т. п.), что дает возможность обрабатывать однотипные поверхности у группы заготовок.

Возможность использования поточного метода работы определяют ко эффициентом поточности К П сопоставлением среднего штучного времени t ш.ср. для основных операций с тактом выпуска деталей τ в :

. (1.6)

При коэффициенте поточности К П > 0,6 принимают поточный метод работы.

Непоточный метод производства характеризуется изготовлением деталей партиями на каждой операции; обрабатывающее оборудование устанавливается в цехе группами по типам станков (токарные, фрезерные, шлифовальные и т. д.); изделия собирают на стационарных приспособлениях. При непоточном методе производства требуется создание заделов, что удлиняет цикл производства.

Цикл производства – это период времени от начала до конца выполнения какого-либо повторяющегося технологического или производственного процесса. Сокращение цикла производства уменьшает межоперационные заделы, незавершенное производство и оборотные фонды, а оборачиваемость вложенных в производство средств значительно повышается.

Понятие «серия» касается количества машин, которые запускаются в производство одновременно или непрерывно в течение определенного интервала времени.

Важным принципом разработки технологического маршрута прохождения деталей по цехам завода служит принцип возможно большего сокращения технологического маршрута при наименьшем пробеге деталей между цехами.

Схема связей цехов завода средней величины показана на рис. 1.1 .

Как видно из схемы (рис. 1.1), по пути в сборочный цех заготовки и детали могут делать двойные пробеги между цехами. Проектируя последовательность обработки отдельных деталей внутри цеха, следует позаботиться о наименьшем пробеге деталей между операциями.

Структура механосборочного производства зависит от конструктивных и технологических особенностей изделий, типа производства и ряда других факторов. Изделия, выпускаемые заводами, распределяют по цехам по предметному, технологическому или смешанному признаку.

При организации цехов по предметному признаку за каждым из них закрепляют все детали определенного узла или изделия и их сборку. В этом случае все цеха являются механосборочными и включают механические и сборочные отделения (участки). При наличии нескольких механосборочных цехов, изготавливающих отдельные узлы, на заводе предусматривают цех общей сборки выпускаемых машин. Такая организация цехов характерна, как правило, для массового и крупносерийного типов производства.

При организации цехов по технологическому признаку детали разныхмашин и узлов группируют по сходному ТП. Такая форма организации характерна для единичного и серийного типов производства, так как здесь обычно не удается загрузить полностью оборудование деталями одного изделия. В цехах обрабатывают сходные детали независимо от того, к какому узлу или машине они относятся. Механообрабатывающее производство в этом случае разделяют на цехи по типу деталей и однородности ТП (например, цехи корпусных деталей, валов, зубчатых колес, метизов и т. д.). Сборочный цех выделяют в самостоятельный цех, в который поступают детали из различных цехов.

Организация цехов по смешанному признаку обычно встречается в серийном производстве при большой номенклатуре изделий. В этом случае для изготовления некоторых изделий цехи организуют по предметному признаку (например, цехи редукторов, электродвигателей, пылесосов и т. д.), а для остальной части изделий – по технологическому признаку.

Изготовление стандартных деталей обычно выделяют в отдельные цехи независимо от принятой схемы организации производства.

Унификация и стандартизация изделий машиностроения способствует специализации производства, сужению номенклатуры изделий и увеличению их выпуска, а это в свою очередь позволяет шире применять поточные методы и автоматизацию производства.

ВВЕДЕНИЕ

Цель и задачи дисциплины, ее место в учебном процессе.

Дисциплина «Основы конструирования технологического оснащения» ставит целью изложение современного опыта проектирования и конструирования технологического оснащения, выбора машин и оборудования машиностроительного производства.

Основные направления развития машиностроения предусматривают дальнейшее повышение его эффективности, интенсификации, уменьшение сроков создания, освоение и производства новой прогрессивной техники. Организационно-методологической основой выполнения поставленной задачи является конструирование машиностроительных изделий с учетом требований технологичности конструкции.

Существует несколько направлений современного проектирования и изготовления машиностроительных изделий, которые непосредственно или косвенно способствуют повышению технологичности конструкций в соответствии с требованиями современного производства. К ним относятся:

1. непрерывно возрастающий объем агрегатного монтажа сборочных единиц, механизмов и оборудования, развитие системы модульного проектирования на базе типизации, унификации и стандартизации;

2. широкое использование ЭВМ, обеспечивающее более высокий уровень анализа конструктивных решений в различных вариантах использования;

3. организация широкого обмена опытом в области создания технологичных конструкций между разными отраслями машиностроения.

Наиболее благоприятны условия для создания технологичной конструкции в тех случаях, когда конструкторский отдел разрабатывает свою техническую идею на основе требований технологии производства, эксплуатации и ремонта.

Процедурная модель проектирования

Главные направления развития технических средств и технологий устанавливается прогнозированием.

Прогнозирование – исследовательский процесс, в результате которого получают вероятностные данные о будущем состоянии прогнозируемого объекта.

С помощью прогнозов определяется предполагаемый ход развития важных процессов в экономике, науке и технике.

В основе прогнозирования лежит предположение, что процессы, события, тенденции, имевшие место в прошлом, действующие в настоящем, будут продолжаться и в будущем. Подобное предположение основано на том, что процессы, действующие в природе, науке и технике, в основном непрерывные и им свойственна некоторая инерционность развития.

Прогнозная тенденция – качественная характеристика развития объекта прогнозирования в прошлом (ретроспективная информация) которая используется для опорных точек построения графика тенденций развития полученный график развития прогнозной тенденции во времени подлежит анализу и математической обработке, выявляется математическая функция и проводится математическая экстраполяция, дающая возможные значения прогнозной тенденции в будущем.

Развитие техники и технологии связано с преемственностью и последовательностью научных разработок. Тщательное прогнозирование развития науки и правильное планирование научных разработок являются ключом НТП.

Техника, развиваясь непрерывно в течение некоторого времени, имеет в целом скачкообразное развитие. В основе скачка лежат открытия или крупные изобретения, коренным образом меняющие существующие принципы в технике и технологии. Они вызывают лавину новых изобретений, совершенствующих новый принцип.

Новые открытия и изобретения продвигают НТП не только в той области, к которой сами относятся, но и в смежных отраслях.

Технология, основанная на данном открытии или изобретении, имеет все предпосылки для бурного, длительного и эффективного использования и развития.

Возникновение новых технологий требует разработки новых средств материального производства и новых конструкторских решений.

Любая технология проходит 3 периода развития.

Сначала технология новая, перспективная и объёмное внедрение постоянно растет(интервал (τ1 - τ2)). В конце этого периода развитие стабилизируется, технология подходит к технической и экономической насыщенности (τ2 - τ3). В этом периоде каждое совершенствование связано со всевозрастающими затратами, при одновременном снижении эффективности.

Наступает момент τ3, при котором дальнейшее техническое развитие не целесообразно, технология становится бесперспективной.

Моральное устаревание технологии I дает толчок изобретению принципиально новой технологии II, по происшествию аналогичного цикла развития которой можно установить пути развития III технологии.

Закономерности циклического развития и смены технологий позволяет установить пути развития и прогнозировать появление новой технологии Ш, которая заменит старые.

Рабочий принцип и структура новой III технологии до ее появления не известны широкому кругу специалистов, но некоторую информацию можно найти в технологических и патентных источников (например, лампы освещения).

Процесс проектирования новой техники во многих отношениях подобен процессу прогнозирования. И в том и в другом случае изучается имеющаяся информация, отражающая всю предыдущую историю проблемы. Результатами разработок являются объекты фантазии человека.

Повышению эффективности проектных решений могут служить использование некоторых принципов применяемых при прогнозировании:

  1. сбор ретроспективной информации с целью выявления тенденций развития параметров;
  2. анализ тенденции развития и попытки вообразить (выяснить) влияние этих тенденций на интересующий разработчика параметр в будущем;
  3. использование ранее разработанных прогнозов, встречающихся в технической информации и позволяющей определить развитие параметра. Эти прогнозы могут относиться непосредственно или косвенно к интересующему разработчику вопроса;
  4. проведение консультаций с крупными специалистами данной отрасли.

В ретроспективную информацию, используемую при определении параметров новых изделий, могут входить: стандарты, промышленные каталоги, статические отчеты, справочники и др.. Особое место занимает патентная информация, обладающая рядом свойств:

· новизна – одна из наиболее отличительных свойств;

· достоверность информации;

· значимость патента относительно информации.

Патентная информация позволяет выявить также, над какими вопросами и направлениями работают специалисты ведущих организаций и стран. Это способствует введению новых разработок на высоком техническом уровне.


ТЕХНИЧЕСКАЯ ПОДГОТОВКА ПРОИЗВОДСТВА

Понятие о технической подготовке производства

Создание новой техники – путь долгий и трудоемкий, не одна идея сразу не находит применения, т.к. это вызвано сложностью структуры новой техники и ее действия. Создание новой техники требует комплексного подхода в технической подготовке производства, которая состоит из трех видов:

1. организационная подготовка

2. конструкторская подготовка (ЕСКД)

3. техническая подготовка (ЕСТПП)

Организационная подготовка определяет собой совокупность работ по организации научных исследований, научного прогнозирования, патентных исследований, технико-экономических исследований, оценки технических возможностей предприятия и отрасли, учету конъектуры рынка как внутри страны, так и за рубежом. Учитываются также потребности капиталовложений и сроки их окупаемости, возможность выделения этих средств на разработку и освоение новых изделий. Кроме того определяются предприятия смежники, прорабатываются вопросы материально-технического снабжения и кадрового обеспечения, прорабатываются вопросы организации эксплуатации, техобслуживания, и ремонта разрабатываемых изделий и многое другое.

Анализ понятий конструирования и проектирования

Разработка новых изделий осуществляется инженерно-техническим персоналом, путем проектирования и конструирования, которые являются процессами взаимосвязанными и дополняющими друг друга. Конструктивная форма объекта уточняется методом проектирования – произведением расчета параметров, прочностных расчетов оптимизации и другими проекционными вопросами. В свою очередь проектирование возможно только предварительно принятых вариантов конструкций. Часто эти два понятия не различают, поскольку они выполняются специалистами одной профессии – инженерами-конструкторами, однако проектирование и конструирование – процессы разные.

Проектирование предшествует конструкции и представляет собой поиск научно обоснованных технически осуществимых и экономически целесообразных инженерных решений. Результатом проектирования является проект разрабатываемого объекта. Проектирование – выбор некоторого способа действия, в частном случае – это создание системы как логической основы действия, способной решать при определенных условиях и ограничениях поставленную задачу. Проект анализируется, обсуждается, корректируется и принимается как основа дальнейшей разработки.

Конструирование – это создание конкретной однозначной конструкции изделия.

Конструкция – это устройство, взаимное расположение частей и элементов какого-либо предмета, машины, прибора, определяющиеся его назначением. Конструкция предусматривает способ соединения, взаимодействия частей, а также материал, из которого отдельные части (элементы, детали) должны быть изготовлены.

В процессе конструирования создаются изображения и виды изделий, рассматривается комплекс размеров с допустимыми отклонениями. Выбирается соответствующий материал, устанавливается требования к шероховатости поверхностей, технические требования изделия и его частям, создается техническая документация.

Конструирование опирается на результаты проектирования и уточняет все инженерные решения, принятые при проектировании. Создаваемая в процессе конструирования техническая документация должна обеспечить перенос всей конструкторской информации на изготавливаемые изделия и его рациональную эксплуатацию.

Проектирование и конструирование – это виды умственной деятельности, когда в уме разработчика создается конкретный мысленный образ, который подвергается мысленным экспериментам, включающих перестановку и вариацию составных частей, их геометрию и параметры, способы смещения и размещения. Одновременно оценивается эффект внесенных изменений.

Разработка, составными частями которой являются проектирование и конструирование, этот термин широко применяется в технической литературе, включает ведение НИР, проектно-конструкторских работ, разработку технологии изготовления, материально техническое обеспечение и организация производства.

Цели, задачи разработки

Целью разработки нового изделия является удовлетворение общественных потребностей. Каждая разрабатываемая конструкция или изделие должно удовлетворять трем основным требованиям:

1. техническим

2. социальным

3. экономическим

Эти требования часто носят противоречивый характер, и задача разработчика заключается в том, чтобы из множества возможных решений выбрать одно, наиболее полно отвечающее всему комплексу требований в целом.

В техническом отношении разработка (изделие) должна быть на уровне современных достижений науки и техники, обеспечивать возможность правильно решать определенные технологические и производственные задачи, выполнять соответствующие функции, производить работу (продукцию) необходимого качества и иметь соответствующие параметры (мощность, производительность, скорость и т.д.)

Наряду с определенным уровнем технического совершенства изделие должно отвечать современным социальным требованиям, обеспечивать улучшение условий и облегчения труда обслуживающего персонала, быть безопасным в эксплуатации и не загрязнять окружающую среду. Для облегчения труда предпочтительна механизация и автоматизация работы самого изделия, и производственного процесса, выполняемого с его участием (для обеспечения удобства управления, наладки, регулирования рабочих процессов и т.п.)

Одно из центральных мест принадлежит экономическим требованиям . Разработка (изделие) должна быть не только конструктивно и технологически возможна, но и экономически целесообразна.

Разрабатывать с учетом экономических требований значит не только уменьшить стоимость изготовления изделий, избегать сложных и дорогих решений, применять простые и дешевые способы обработки, но главное значение имеет то, что экономический эффект определяется полезной отдачей изделия и суммой эксплуатационных расходов за весь период работы изделия. Стоимость изделия является не всегда главной, а иногда и очень не значительной составляющей этой суммы. Частая экономия, достигаемая без учета всего комплекса стоимостных показателей, не редко ведет к снижению суммарной эффективности изделия.

Стадии разработки нового изделия

Требования к проектируемому (разрабатываемому) конструкции необходимо взаимосвязывать со стадиями разработки конструкторской документации и этапами производственного процесса изготовления. В процессе изготовления и внедрения новых изделий (новой техники) всех отраслей машиностроения выделяют основные этапы:

1) научно-исследовательские работы (НИР);

2) опытно-конструкторские работы (ОКР);

3) опытно-технологические работы (ОТР);

4) освоение серийного производства.

2 - разработка ТЗ;

3 - разработка технического предложения, эскизного и технического проекта;

4 - разработка технической документации на опытный образец;

5 - разработка предварительного технологического проекта;

6 - разработка технологии изготовления опытного образца;

7 - разработка и создание технологической оснастки для изготовления опытного образца;

8 - изготовление и испытание опытного образца;

9 - разработка конструкторской документации па серию;

10 - разработка технологической документации на серию;

11 - разработка и изготовление технологической оснастки на серию;

12 - изготовление установочной партии, начало серийного производства.

В результате НИР (ГОСТ 15.101-80) выбирают оптимальные технические решения для нового изделия с учетом технологии его изготовления; иногда при этом требуется разработка новых материалов, комплектующих изделий и новых технологических процессов.

Исходным документом для проведения ОКР является ТЗ - техническое задание .Общий порядок разработки, согласования и утверждения технических заданий, проведения экспертизы технической документации, испытаний опытных образцов (опытных партий), выдачи разрешений для постановки на производство новых и модернизированных изделий, а также проведения контрольных испытаний изделий серийного и массового производства установлены ГОСТ 15.000-82 и ГОСТ 15.001-73.

В результате ОКР должна быть разработана конструкторская документация.

Конструкторская документация - это графические и текстовые документы, которые в отдельности или в совокупности определяют состав и устройство изделия и содержат необходимые данные для его разработки или изготовления, контроля, приемки, эксплуатации и ремонта.

Виды и комплектность конструкторских документов, разрабатываемых на изделия всех отраслей машиностроения, установлены ГОСТ 2.102-68, стадии разработки ГОСТ 2.103-68, обозначение изделий и конструкторских документов – ГОСТ 2.201-80.

Обязательность выполнения стадий и этапов разработки конструкторской документации устанавливается техническим заданием на разработку.

Проектная конструкторская документация (техническое предложение, эскизный и технический проекты) содержат данные, необходимые для разработки изделия, рабочая конструкторская документация - данные, необходимые для его изготовления.

Технологическую подготовку производства начинают на стадии ОКР. Параллельно с разработкой проектно-конструкторской документации (КД) разрабатывают предварительный проект технологической документации (ТД), включающий основные технологические решения и новые технологические процессы, которые будут приняты при производстве нового изделия. При разработке КД на опытные образцы одновременно разрабатывают технологию и технологическую оснастку для их изготовления. Такая параллельная работа конструкторов и технологов на стадии ОКР ускоряет процесс освоения нового изделия. При этом требуется четкая координация всего комплекса работ по технической подготовке производства (конструкторской, технологической, организационной).

На стадии технического предложения разрабатывают конструкторские документы, обосновывающие предлагаемые варианты технических решений на основе анализа технического задания, с учетом возможности реализации указанных в нем характеристик и требований, дают сравнительные оценки решений разрабатываемых и существующих изделий, а также патентных материалов.

Техническое предложение после согласования и утверждения в установленном порядке является основанием для разработки эскизного или технического проекта (для сокращения сроков проектирования допускается стадию технического предложения совмещать со стадиями эскизного и технического проектов).

На стадии эскизного проекта намечают принципиальную схему конструкции, создают общую компоновку изделия, укрупненно определяют габаритные размеры, устанавливают максимальные размеры и массы наиболее ответственных деталей, выполняют приблизительные расчеты производства. На этой стадии целесообразно привлекать для консультаций технологов. Это позволяет своевременно организовать исследовательские работы, спроектировать или приобрести специальное оборудование, освоить новые процессы.

При эскизном проектировании изделие расчленяют на основные самостоятельные сборочные единицы, Что определяет организационную структуру сборки. На этом же этапе решают существенно важный вопрос - унификацию и использование отдельных сборочных единиц и агрегатов изделий того же класса, а также выбирают материал и вид заготовок (литье, штампосварпые конструкции и т. д.) основных наиболее трудоемких деталей.

Целесообразно выполнить основные технико-экономические расчеты (ТЭР), установить ориентировочную трудоемкость изготовления, себестоимость изделия, основной объем кооперации.

На стадии технического проекта уточняют конструкцию изделия; разрабатывают отдельные сборочные единицы и детали с учетом их размеров, конструктивных форм и точностных характеристик; устанавливают марки материалов и виды заготовок основных деталей; выделяют сборочные единицы и агрегаты конструкции, что определяет характер и порядок сборочных работ; проводят анализ обеспечения беспригоночной сборки, а при необходимости и анализ взаимозаменяемости сборочных единиц и изделия в целом, максимально их унифицируя; назначают виды покрытий и термической обработки исходя из условий работы деталей изделия (сборочной единицы) с учетом технологии их изготовления.

Целесообразно продолжить технико-экономический анализ создаваемой конструкции и, насколько возможно, уточнять трудоемкость изготовления, себестоимость, циклы изготовления и сборки изделия.

На стадии рабочей конструкторской документации разрабатывают чертежи деталей, сборочные чертежи, спецификации, ведомости покупных изделий, технические условия, а при также монтажные, габаритные чертежи, схемы, таблицы, методики расчетов и другие документы (в соответствии с ГОСТ 2.102-68), необходимые для промышленного изготовления изделий.

На этой же стадии отрабатывают рациональные формы и размеры деталей, определяющие виды заготовок, уточняют допуски и устанавливают качество рабочих поверхностей деталей, осуществляют максимально возможную унификацию элементов конструкции (диаметров отверстий, крепежных деталей, резьб, шлицев и др.), что резко сокращает номенклатуру материального и режущего инструментов, а также повышает технологичность изделия. Материалы, применяемые для изготовления деталей, необходимо максимально унифицировать, сокращая число марок и типоразмеров сортового материала (прокат, листы).

Применение новых или нетрадиционныхматериалов, технологические свойства которых еще недостаточно изучены, вызывает значительные затруднения при серийном производстве изделия, поэтому к выбору материалов необходимо привлекать материаловедов для экспериментального изучения и освоения процессов обработки таких материалов.

На этой стадии на первом этапе разрабатывают документацию для изготовления и испытаний опытного образца (опытной партии), корректируют документацию по результатам заводских испытаний, затем вновь изготавливают опытный образец (опытную партию) для проведения государственных, межведомственных и других испытаний с последующей повторной корректировкой конструкторской документации.

На стадии изготовления и испытания опытныхобразцов и серий выполняют дальнейшую отработку конструкций на основе практических результатов изготовления деталей, сборочных единиц и изделия в целом.

После изготовления опытных образцов по результатам приемочных испытаний проводят корректировку и согласование технической документации с присвоением документации литеры в соответствии с требованиями ГОСТ 2.103-68.

На этапе изготовления и испытания установочной серии используют оборудование, предназначенное для серийного производства нового изделия. Установочные серии сдают межведомственной комиссии (МВК), в работе которой принимают участие представители разработчиков, заказчиков, технологических институтов, органов стандартизации и надзора. В отличие от приемки опытных образцов, при приемке установочных серий основное внимание уделяют технологии изготовления нового изделия. По результатам изготовления и испытаний установочной серии корректируют конструкторскую и технологическую документацию.

На заключительном этапе изготавливают и испытывают головную (контрольную) серию с последующей корректировкой технической документации, а затем окончательной отработкой и проверкой полностью оснащенного технологического процесса.

Отработка изделия в основном должна заканчиваться в период освоения серийного производства, когда для обеспечения заданного выпуска изделий внедряют в намеченном объеме всю производственную оснастку и оборудование, включая и специальное, когда производство стабилизируется и обеспечивает высокое качество изделия при минимальной себестоимости.

Техническое задание на проектирование

Техническое задание на проектирование или модернизацию приспособлений должно обобщить все основные требования, предъявляемые к приспособлению и его отдельным элементам. Оно оформляется по общепринятой форме, подписывается и утверждается в установленном порядке.

В техническом задании приводятся следующие сведения:

1.Наименование приспособления.

2.Назначение приспособления.

3.Технические требования, среди которых указываются: место установки приспособления; выделяемая площадь; характеристики энергоносителей (напряжение и род тока, давление воздуха, воды, пара); габариты приспособления; требуемая производительность; перечень деталей и сборочных единиц, собираемых (свариваемых) в приспособлении; условия подачи деталей к приспособлению и выдачи изделия, вид транспортных средств; требования к управлению (расположение пульта, необходимость дистанционного управления); требования по ОТ и ТБ; эргономические требования.

4.Технологический процесс с подробной расшифровкой операций, переходов, и проходов, выполняемых на данном приспособлении или с его помощью.

5.Дополнительные технические требования, характеризующие режим работы приспособления; возможность его переналадки; степень механизации и автоматизации; надёжность; унификацию и стандартизацию; связь с другими приспособлениями; климатические условия эксплуатации; требования к маркировке и упаковке.

6.Экономические показатели от использования приспособления (сметная стоимость, годовой экономический эффект, срок окупаемости капитальных затрат и др.).

7.Рабочие чертежи сварной конструкции.

8.Чертежи заготовок с фактическими размерами (фактическими отклонениями размеров и формы заготовок).

9.Принципиальная схема приспособления.

10.План цеха с разрезами и сеткой колонн с указателями направления движения изделий, подъемно-транспортных средств цеха и мест расположения энергоносителей.

11.Данные об аналогичных приспособлениях.


МЕТОДИКА КОНСТРУИРОВАНИЯ

Исходными материалами для проектирования м. быть:

Техническое задание, выдаваемое заказчиком, определяющее параметры машины или оборудования, область и условия применения;

- техническое предложение, выдвигаемое в инициативном порядке проектной организацией или группой конструкторов;

НИР или созданный на ее основе экспериментальный образец;

Изобретение или патент;

Образец зарубежной машины, подлежащий копированию или воспроизведению с изменениями.

К техническим заданиям необходимо подходить практически. Конструктор обязан проверить задание и в нужных случаях обоснованно доказать необходимость его корректирования.

Машины с неправильно выбранными параметрами (необоснованно завышенными или заниженными) либо не могут быть выполнены, либо устаревают уже к началу серийного выпуска.

Конструктивная преемственность

Конструктивная преемственность - это использование при проектировании предшествующего опыта машиностроения данного профиля и смежных отраслей, введение в проектируемый агрегат всего полезного, что есть в существующих конструкциях машин.

Начальную модель машины постепенно совершенствуют, снабжают новыми конструктивными решениями. Побеждают наиболее прогрессивные и конкурентоспособные конструкции и решения.

Изучая историю развития любой отрасли машиностроения, можно обнаружить огромное многообразие перепробованных схем и конструктивных решений. Многие из них, исчезнувшие и основательно забытые, возрождаются через десятки лет на новой технической основе. Изучение истории позволяет избежать ошибок и повторение пройденных этапов и вместе с тем наметить перспективы развития.

Полезно составлять графики, отображающие изменение по годам главных параметров машин (мощность, производительность, масса и т.д.).

Анализ таких графиков и их экстраполяция позволяют четко представить каковы будут параметры машин и их конструкция через несколько лет.

Основная задача заключается в правильном выборе параметров машины. Частные конструктивные ошибки исправимы в процессе изготовления и доводки машины. Ошибки же в параметрах и в основном замысле машины не поддаются исправлению и нередко ведут к провалу.

Выбору параметров должно предшествовать полное исследование всех факторов, определяющих конкурентоспособность машины. Необходимо изучить опыт выполненных зарубежных и отечественных машин, провести сравнительный анализ их достоинств и недостатков, выбрать правильный аналог и прототип, выяснить тенденции развития и погрешности данной отрасли.

Привод толкателя

Инверсия устраняет поперечные нагрузки на толкатель. Боек можно выполнить цилиндрическим, что дает линейный контакт.

Привод коромысла

Инверсия улучшает смазку соединения (масло в чаше).

Направляющая

Инверсия улучшает смазку.

Крепление шпильки

Инверсия повышает прочность резьбового соединения (податливость бобышки способствует более равномерному распределению нагрузки по виткам).

Ходовой винт.

Облегчается изготовление (нарезание длинной резьбы в отверстии затруднительно). При одинаковом диаметре резьбы прочность винта выше.

Установка шатуна в вилке

Инверсия улучшает условия работы подшипника вследствие увеличения его жесткости и более благоприятного отношения длины к диаметру.

Направляющая шпонка

Шпонка установлена в ступице и перемещается в продольном пазу вала. Схема облегчает изготовление узла и улучшает управление.

Компонование

Компонование обычно состоит из двух этапов: эскизного и рабочего.

В эскизной компоновке разрабатывают основную схему и общую конструкцию агрегата (целесообразно несколько вариантов).

На основании анализа эскизной компоновки составляют рабочую компоновку , уточняющую конструкцию агрегата и служащую исходным материалом для дальнейшего проектирования.

При компоновании важно уметь видеть главное из второстепенного и установить правильную последовательность разработки.

Компоновку следует начинать с решения главных вопросов - выбора рациональных кинематической и силовой схем, правильных размеров и формы основных деталей, определение наиболее целесообразного взаимного их расположения. При компоновании надо идти от общего к частному, а не наоборот. Подробности на этом этапе лишь вредят, т.к. отвлекает внимание и сбивают логику разработки.

Другое основное правило компонования - разработка вариантов, углубленный их анализ и выбор наиболее рационального.

Полная разработка вариантов необязательна. Обычно достаточно карандашных набросков от руки, чтобы получить представление о перспективности варианта и решить вопрос о целесообразности продолжения работы над ним.

В процессе компонования основные детали конструкции должны быть рассчитаны на прочность и жесткость.

Необходимое условие правильного конструирования - постоянно иметь ввиду вопросы изготовления и с самого начала придавать деталям технологически целесообразные формы.

Компоновку необходимо вести на основе нормальных размеров (диаметры посадочных поверхностей, размеры шпоночных и шлицевых соединений, диаметров резьб и т.д.).

При компоновании должны быть учтены все условия, определяющие работоспособность агрегата, разработаны системы смазки, охлаждения, сборки-разборки, крепления агрегата (приспособления) и присоединения к нему смежных деталей (приводных валов, коммуникаций, электропроводки); предусмотрены условия удобного обслуживания, осмотра и регулирования механизмов; выбраны материалы для основных деталей; предусмотрены способы повышения долговечности, износостойкости; исследованы возможности формирования и развития. Полезны перерывы, консультации, критика разработчиков и эксплуатационников.

Техника компонования

Компонование лучше всего вести в масштабе 1:1. При этом легче выбрать нужные размеры и сечения деталей, составить представление о соразмерности частей конструкции, прочности и жесткости деталей и конструкции в целом. Такой масштаб избавляет от необходимости нанесения большого числа размеров и облегчает проектирование, в частности деталировку.

Компоновку простейших объектов можно разрабатывать в одной проекции, в которой конструкция выясняется наиболее полно.

Техника выполнения компоновочных чертежей представляег собой процесс непрерывных поисков, проб, прикидок, разработки вариантов, их сопоставления и отбраковки негодных. Чертить следует со слабым нажимом, не следует тратить время на вырисовывание подробностей и штриховку. Типовые детали и узлы (крепежные изделия, уплотнения, пружины, подшипники качения) целесообразно изображать упрощенно. Обводку чертежа, штриховку, раскрытие условностей изображения и подрисовывание мелких деталей относят на окончательные стадии компонования.

Существует школа компонования от руки на миллиметровке. Оно имеет большие преимущества по производительности, гибкости, легкости внесения поправок; почти полностью исключает возможности ошибок в увязочных размерах и обеспечивает легкое чтение размеров всех деталей.

1. Вычерчивают цветным карандашом контур собираемого изделия в двух-трех проекциях на значительном расстоянии друг от друга.

2. Чертят опоры, упоры, пальцы и другие фиксирующие элементы приспособления так. чтобы базовые поверхности деталей с ними соприкасались.

3. Вычерчивают зажимные механизмы и приводы.

4. Наносят вспомогательные устройства и детали.

5. Оформляют корпус приспособления с учетом удобного размещения всех элементов приспособления.

6. Вычерчивают необходимые разрезы, сечения и виды.

7. Делают увязку приспособления со средствами механизации (межоперационный транспорт, грузоподъемные механизмы).

8. Оформляют чертеж приспособления. Проставляют размеры (габаритные с особой точностью), допуски, составляют спецификации. Указывают технические требования к сборке приспособления.

9. Согласовывают и утверждают чертежи.

В процессе производят необходимые расчеты.


ЖЕСТКОСТЬ КОНСТРУКЦИЙ

Жесткость - это способность системы сопротивляться действию внешних нагрузок с наименьшими деформациями.

Понятием, обратным жесткости, является податливость, т.е. свойство системы приобретать относительно больше деформации под действием внешних нагрузок (пружины, рессоры и Т.Д.)

Жесткость оценивают коэффициентом жесткости, представляющем собой отношение силы Р , приложенной к системе, к максимальной деформации f , вызываемой этой силой.

1) Для случая растяжения - сжатия бруса постоянного сечения в пределах упругой деформации коэффициент жесткости согласно закону Гука:

l = P/ f = σF / f = EF / l,

где F – сечение бруса (мм 2)

l – длина бруса (мм)

Коэффициент податливости

m = f / P = l/ EF.

2) Для случая кручения бруса постоянного сечения коэффициент жесткости:

l кр = M кр / j = GI/ I P ,

где М кр – крутящий момент;

j - угол поворота сечения [рад] бруса на длине l [мм];

I P – полярный момент инерции сечения бруса.

3) Для случая изгиба бруса постоянного коэффициент жесткости:

l ИЗГ = P / f = a(EI/ l 3),

где I – момент инерции сечения бруса;

l – длина бруса (мм);

a – коэффициент, зависит от условий нагружения.

Жесткость системы сильно зависит от условий приложения нагрузки. При заданной нагрузке и заданных размерах системы жесткость определяется максимальной деформацией f .

Расчет рычажных устройств

Кинематические схемы и конструкции рычажных зажимных устройств, применяемых в сборочно-сварочных приспособлениях, настолько многочисленны и разнообразны, что дать универсальный метод их расчета, одинаково пригодный для всех, конечно невозможно.

Рассмотрим расчет схемы рычажного зажимного устройства для сборки тавровых балок.

Усадочные силы, действующие по оси швов:

После сварки первого шва

После сварки обоих швов

Расчетные усилия, возникающие на зажимах кондуктора под действием усадочных сил, будут.

Введение

Разработка нового изделия в машиностроении – сложная комплексная за-

дача, связанная не только с достижением требуемого технического уровня это-

го изделия, но и с приданием его конструкций таких свойств, которые обеспе-

чивают максимально возможное снижение затрат труда, материалов и энергии

на его разработку, изготовление, эксплуатацию и ремонт. Решение этой задачи

определяется творческим содружеством создателей новой техники – конструк-

торов и технологов – и их взаимодействием на этапах разработки конструкции

с его изготовителями и потребителями.

В реализации требуемых свойств изделий машиностроения определяющая

роль принадлежит методам и средствам производства этих изделий. Детали, уз-

лы и другие компоненты машин чрезвычайно разнообразны, и для их изготов-

ления необходимы материалы с самыми различными свойствами, а также тех-

нологические процессы, основанные на разных принципах действия.

Многолетняя практика показывает, что в современном машиностроитель-

ном производстве не существует универсальных методов обработки, в равной

мере эффективных для изготовления различных деталей из разных материалов.

Каждый метод обработки имеет свою конкретную область применения, причем

эти области нередко пересекаются так, что одна и та же деталь может быть из-

готовлена различными методами. Поэтому выбор способа изготовления деталей

с учетом конкретных производственных условий связан с необходимостью вы-

бора оптимального метода из большого числа возможных, исходя из заданных

технико-экономических ограничений как по параметрам изготавливаемой дета-

ли, так и по условиям эксплуатации оборудования и инструмента.

Целью изучения дисциплины является ознакомление студентов с основами

знаний о современном машиностроительном производстве: с видами материа-

лов и способов их производства, с технологическими процессами изготовления

деталей машин и сборочными работами. Текст лекций содержит 7 разделов. В

первом разделе излагаются основы производственного процесса и его состав-

ляющие. Рассматриваются кристаллизация и строение металлов и сплавов, спо-

собы их термической обработки, описаны превращения, протекающие в спла-



вах при их нагреве и охлаждении. Уделено внимание сплавам на основе цвет-

ных металлов, свойствам сталей, методам их улучшения, а также неметалличе-

ским, порошковым и композиционным материалам, которые являются перспек-

Во втором разделе рассмотрены основы металлургического и литейного

процесса. Внимание сконцентрировано на методах получения и физико-

химической переработке конструкционных материалов. Рассмотрены основы

современной технологии литейного производства, специальные способы литья

и применяемое оборудование для их выплавки.

Третий раздел посвящен обработке металлов давлением. Даны представле-

ния о влиянии процессов пластического деформирования на структуру металла,

на его механические свойства.

В четвертом разделе рассмотрены вопросы сварочного производства, про-

цессы пайки и получение неразъемных клеевых соединений. Физические осно-

вы сварки, ее способы, различные виды оборудования.

В пятом разделе описаны основные процессы, протекающие при обработке

металлов резанием. Приведены краткие сведения о металлорежущих станках,

инструментах, работах, выполняемых на этом оборудовании. Здесь же рассмот-



рены вопросы электрофизической и электрохимической обработки.

В шестом разделе рассматривают получение материалов на основе поли-

В седьмом разделе рассмотрены технологические процессы сборки, вопро-

сы контроля в машиностроении.

Развитие и совершенствование любого производства в настоящее время

зависит от знаний инженера и от того, насколько он владеет методами изготов-

ления деталей машин и их сварки. Важным направлением научно - техническо-

го процесса является создание и широкое применение новых конструкционных

материалов для того, чтобы повысить технический уровень и надежность обо-

рудования с учетом экономических показателей, для этого инженер должен об-

ладать глубокими технологическими знаниями.

Раздел 1. Производственный процесс изготовления машины.

Конструкционные материалы

Глава 1. Теоретические основы технологии

машиностроения

Лекция 1. Понятие о производственном и технологическом

процессах

Все то, что имеет общество для удовлетворения своих потребностей, связано с использованием или переработкой продуктов природы. Последнее неразрывно связано с необходимостью реализации тех или иных производственных процессов, т. е. в конечном итоге с затратами человеческого труда. В производственный процесс входят все этапы переработки продуктов природы в предметы (машины, строения, материалы и т. п.), необходимые человеку. Так, например, для создания станка необходимо добыть и переработать руду, затем из металла создать заготовки будущих деталей станка, осуществлять этап их переработки, а затем сборки. При создании машины обычно ограничиваются рассмотрением производственных процессов, реализуемых на машиностроительном предприятии.

Изделием в машиностроении называют любой предмет или набор пред-

метов, подлежащих изготовлению. Изделием может быть любая машина или ее

элементы в сборе, остальные детали в зависимости от того, что является про-

дуктом конечной стадии данного производства. Например, для станкострои-

тельного завода изделием являются станок или автоматическая линия, для за-

вода изготовления крепежных деталей – болт, гайка и т. п.

Производственным процессом в машиностроении называют совокуп-

ность всех этапов, которые проходят полуфабрикаты на пути их превращения в

готовую продукцию: металлообрабатывающие станки, литейные машины, куз-

нечно-прессовое оборудование, приборы и другие.

На машиностроительном заводе производственный процесс включает:

подготовку и обслуживание средств заготовок, их хранение; различные виды

обработки (механическую, термическую и т.д.); сборку изделий и их транспор-

тирование, отделку, окраску и упаковку, хранение готовой продукции.

Наилучший результат дает всегда тот производственный процесс, в кото-

ром все этапы строго организационно согласованы и экономически

обоснованы.

Технологическим процессом называют часть производственного процес-

стояния предмета производства. В результате выполнения технологических

процессов изменяются физико-химические свойства материалов, геометриче-

ская форма, размеры и относительное положение элементов деталей, качество

поверхности, внешний вид объекта производства и т.д. Технологический про-

цесс выполняют на рабочих местах. Рабочее место представляет собой часть

цеха, в котором размещено соответствующее оборудование. Технологический

процесс состоит из технологических и вспомогательных операций (например,

технологический процесс обработки валика состоит из токарных, фрезерных,

шлифовальных и других операций).

Производственный состав машиностроительного завода. Машино-

строительные заводы состоят из отдельных производственных единиц, назы-

ваемых цехами, и различных устройств.

Состав цехов, устройств и сооружений завода определяется объектом вы-

пуска продукции, характером технологических процессов, требованиями к ка-

честву изделий и другими производственными факторами, а также в значитель-

ной мере степенью специализации производства и кооперирования завода с

другими предприятиями и смежными производствами.

Специализация предполагает сосредоточение большого объема выпуска

строго определенных видов продукции на каждом предприятии.

Кооперирование предусматривает обеспечение заготовками (отливками,

поковками, штамповками), комплектующими агрегатами, различными прибо-

рами и устройствами, изготовляемыми на других специализированных пред-

приятиях.

Если проектируемый завод будет получать отливки в порядке коопериро-

вания, то в его составе не будет литейных цехов. Например, некоторые станко-

строительные заводы получают отливки со специализированного литейного за-

вода, снабжающего потребителей литьем в централизованном порядке.

Состав энергетических и санитарно-технических устройств завода также

может быть различными в зависимости от возможности кооперирования с дру-

гими промышленными и коммунальными предприятиями по снабжению элек-

троэнергией, газом, паром, сжатым воздухом, в части устройства транспорта,

водопровода, канализации и т. д.

Дальнейшее развитие специализации и в связи с этим широкое коопери-

рование предприятий значительно отразятся на производственной структуре

заводов. Во многих случаях в составе машиностроительных заводов не преду-

сматриваются литейные и кузнечно-штамповочные цехи, цехи по изготовлению

крепежных деталей и т. д., так как заготовки, метизы и другие детали постав-

ляются специализированными заводами. Многие заводы массового производст-

ва в порядке кооперирования со специализированными заводами также могут

снабжаться готовыми узлами и агрегатами (механизмами) для выпускаемых

машин; например, автомобильные и тракторные заводы – готовыми двигателя-

Состав машиностроительного завода можно разделить на следующие

1) заготовительные цехи (чугунолитейные, сталелитейные, литейные

цветных металлов, кузнечные, кузнечно-прессовые, прессовые, кузнечно-

штамповые и др.);

2) обрабатывающие цехи (механические, термические, холодной штам-

повки, деревообрабатывающие, металлопокрытий, сборочные, окрасочные и

3) вспомогательные цехи (инструментальные, ремонтно-механические,

электроремонтные, модельные, экспериментальные, испытательные и др.);

4) складские устройства (для металла, инструмента, формовочных и ших-

товых материалов, принадлежностей и разных материалов для готовых изде-

лий, топлива, моделей и др.);

5) энергетические устройства (электростанция, теплоэлектроцентраль,

компрессорные и газогенераторные установки);

6) транспортные устройства;

7) санитарно-технические устройства (отопление, вентиляция, водоснаб-

жение, канализация);

8) общезаводские учреждения и устройства (центральная лаборатория,

технологическая лаборатория, центральная измерительная лаборатория, главная

контора, проходная контора, медицинский пункт, амбулатория, устройства свя-

зи, столовая и др.).

Технологической операцией называют законченную часть технологиче-

ского процесса, выполняемую на одном рабочем месте одним или несколькими

рабочими, или одной или несколькими единицами автоматического оборудова-

ния. Операция охватывает все действия оборудования и рабочих над одним или

несколькими совместно обрабатываемыми (собираемыми) объектами произ-

Операция является основным элементом производственного планирования и учета.

Трудоемкость производственного планирования и учета.

Трудоемкость технологического процесса, число рабочих, обеспечение

оборудованием и инструментом определяют по числу операций.

К вспомогательным операциям относят контроль деталей, их транспорти-

рование, складирование и другие работы. Технологические операции делят на

технологические и вспомогательные переходы, а также на рабочие и вспомога-

тельные ходы. Основным элементом операции является переход.

Технологический переход – законченная часть технологической опера-

ции, характеризуемая постоянством применяемого инструмента и поверхно-

стей, образуемых обработкой или соединяемых при сборке. При обработке ре-

занием технологический переход представляет собой процесс получения каж-

дой новой поверхности или сочетания поверхностей режущим инструментом.

Обработку осуществляют в один или несколько переходов (сверление отвер-

стия – обработка в один переход, а получение отверстия тремя последовательно

работающими инструментами: сверлом, зенкером, разверткой - обработка в три

перехода). Переходы могут совмещаться во времени, например, обработка сра-

зу трех отверстий тремя расточными оправками, или фрезерование трех сторон

корпусной детали тремя торцевыми фрезами.

Вспомогательный переход – законченная часть технологической опера-

ции, состоящая из действий человека и (или) оборудования, которые не сопро-

вождаются изменением формы, размеров и качества поверхностей, но необхо-

димы для выполнения технологического перехода (например, установка заго-

товки, ее закрепление, смена режущего инструмента).

Переходы могут быть совмещены во времени за счет одновременной об-

работки нескольких поверхностей детали несколькими режущими инструмен-

тами. Их можно выполнять последовательно, параллельно (например, одновре-

менная обработка нескольких поверхностей не агрегатных или многорезцовых

станках) и параллельно-последовательно.

Рабочим ходом называют законченную часть технологического перехо-

да, состоящую из однократного перемещения инструмента относительно заго-

товки, сопровождаемого изменением формы, размеров, качества поверхности

или свойств заготовки. При обработке резанием в результате каждого рабочего

хода с поверхности или сочетания поверхностей заготовки снимается один слой

материала. Для осуществления обработки заготовку устанавливают и закреп-

ляют с требуемой точностью в приспособлении или на станке, при обработке -

на сборочном стенде или другом оборудовании.

На станках, обрабатывающих тела вращения, под рабочим ходом пони-

мают непрерывную работу инструмента, например на токарном станке снятие

резцом одного слоя стружки непрерывно, на строгальном станке снятие одного

слоя металла по всей поверхности.

Если слой материала не снимается, а подвергается пластической дефор-

мации (например, при образовании рифлений), также применяют понятие рабо-

чего хода, как и при снятии стружки.

Вспомогательный ход – законченная часть технологического перехода,

состоящая из однократного перемещения инструмента относительно заготовки,

не сопровождаемого изменением формы, размеров, шероховатости поверхно-

сти или свойств заготовки, но необходимого для выполнения рабочего хода.

Все действия рабочего, совершаемые им при выполнении технологиче-

ской операции, расчленяются на отдельные приемы. Под приемом понимают

законченное действие рабочего. Установом называют часть операции, выпол-

няемую при одном закреплении заготовки (или нескольких одновременно об-

рабатываемых) на станке или в приспособлении, или собираемой сборочной

единицы, так, например, обтачивание вала при закреплении в центрах - первый

установ; обтачивание вала после его поворота и закрепления в центрах для об-

работки другого конца – второй установ. При каждом повороте детали на ка-

кой-либо угол создается новый установ (при повороте детали необходимо ука-

зывать угол поворота: 45°, 90°, и т. д.) Установленная и закрепленная заго-

товка может изменять свое положение на станке относительно его рабочих ор-

ганов под воздействием перемещающих или поворотных устройств, занимая

новую позицию.

Позицией называется каждое отдельное положение заготовки, занимае-

мое ею относительно станка при неизменном ее закреплении.

Производственная программа машиностроительного завода содержит но-

менклатуру изготавливаемых изделий (с указанием типов и размеров), количе-

ство изделий каждого наименования, подлежащих выпуску в течение года, пе-

речень и количество запасных деталей к выпускаемым изделиям.

Единичное производство характеризуется выпуском изделий широкой

номенклатуры в малом количестве и единичных экземплярах. Изготовление из-

делий либо совсем не повторяется, либо повторяется через неопределенное

время, например: выпуск экспериментальных образцов машин, крупных метал-

лорежущих станков, прессов и т. д.

В серийном производстве изделия изготовляют по неизменным чертежам

партиями и сериями, которые повторяются через определенные промежутки

времени. В зависимости от числа изделий в серии серийное производство раз-

деляют на мелко-, средне- и крупносерийное. Продукцией серийного производ-

ства являются машины, выпускаемые в значительном количестве: металлоре-

жущие станки, насосы, компрессоры и т. д. В этом производстве используют

высокопроизводительное, универсальное, специализированное и специальное

оборудование, универсальные, переналаживаемые быстродействующие при-

способления, универсальный и специальный инструмент. Широко применяют

станки с ЧПУ, многоцелевые станки.

Оборудование располагают по ходу технологического процесса, а часть

его – по типам станков. На большинстве рабочих мест выполняют периодиче-

ски повторяющиеся операции, В серийном производстве цикл изготовления

продукции короче, чем в единичном производстве.

Массовым называется производство большого числа изделий одного и того же типа по неизменным чертежам в течение длительного времени. Продукцией массового производства яв-

ляются изделия узкой номенклатуры и стандартного типа.

В этом производстве на большинстве рабочих мест выполняют только

одну закрепленную за ними постоянно повторяющуюся операцию. Оборудова-

ния в поточных линиях располагают по ходу технологического процесса. В

массовом производстве широко используют специальные станки, станки-

автоматы, автоматические линии и заводы, специальные режущие измеритель-

ные инструменты и различные средства автоматизации.

Лекция 2. Служебное назначение машины. Качество машины.

Точность деталей. Точность обработки

Служебное назначение машины. Любая машина создается для удовле-

творения определенной потребности человека, которая находит отражение в

служебном назначении машины. Создание любой машины является следствием

потребности того или иного технологического процесса. Такой подход предо-

пределяет необходимость в четком определении тех функций, которые должна

выполнять данная машина, т. е. в определении ее служебного назначения.

Машина может быть определена как устройство, выполняющее целесооб-

разные механические движения, служащие для преобразования полуфабрика-

тов в предметы (изделие) или действия необходимые человеку.

Технологической машиной называется машина, в которой преобразование

материала состоит в изменении его формы, размеров и свойств. К этому классу

машин относятся металлорежущие станки, кузнечно-прессовое оборудование и

Под служебным назначением машины понимается максимально уточ-

ненная и четко сформулированная задача, для решения которой предназначает-

ся машина.

Однако и приведенная формулировка недостаточно развернута, чтобы

создать и выпустить станок, отвечающий своему служебному назначению. Ее

необходимо дополнить такими данными, как характер и точность заготовок,

которые должны поступать на станок, материал режущего инструмента, необ-

ходимость или отсутствие необходимости обработки полученных поверхностей

на валиках и т. д. В ряде случаев необходимо указать те условия, в которых

должны работать машины; например, возможные колебания температуры,

влажности и т. д.

Опыт машиностроения показывает, что каждая ошибка, допущенная при

выявлении и уточнении служебного назначения машины, а также и ее механиз-

мов, не только приводит к созданию недостаточно качественной машины, но и

вызывает лишние затраты труда на ее освоение. Нередко недостаточно глубо-

кое изучение и выявление служебного назначения машины порождает излишне

жесткие, экономически неоправданные требования к точности и другим показа-

телям качества машины.

Каждая машина, как и ее отдельные механизмы, выполняет свое служеб-

ное назначение при помощи ряда поверхностей или их сочетаний, принадле-

жащих деталям машины. Условимся называть такие поверхности или их соче-

тания исполнительными поверхностями машины или ее механизмов.

Действительно, сочетания конических поверхностей переднего конца

шпинделя и пиноли задней бабки определяют положение обрабатываемой на

станке детали, установленной в центрах, поверхности которых входят в ком-

плекс исполнительных поверхностей. На фланец переднего конца шпинделя

монтируется поводковый патрон, через который обрабатываемой детали сооб-

щается вращательное движение. Поверхности резцедержателя определяют по-

ложение резцов относительно обрабатываемой детали и непосредственно пере-

дают им необходимые для обработки движения. Исполнительными поверхно-

стями зубчатой передачи, рассматриваемой как механизм, являются сочетания

боковых рабочих поверхностей зубьев пары зубчатых колес, работающих со-

вместно. Исполнительными поверхностями двигателя внутреннего сгорания,

рассматриваемого как механизм, служащего для преобразования тепловой

энергии в механическую, являются поверхности поршня и рабочего цилиндра и

Основы разработки конструктивных форм машины и ее деталей.

После того как выявлено и четко сформулировано служебное назначение ма-

шины, выбирают исполнительные поверхности или заменяющие их сочетания

поверхностей надлежащей формы. Затем выбирается закон относительного

движения исполнительных поверхностей, обеспечивающий выполнение маши-

ной ее служебного назначения, разрабатывается кинематическая схема машины

и всех составляющих ее механизмов.

На следующем этапе рассчитываются силы, действующие на исполни-

тельных поверхностях машины, и характер их действия. Используя эти данные,

рассчитывают величину и характер сил, действующих на каждом из звеньев

кинематических цепей машины и её механизмов с учетом действия сил сопротивления (трения, инерции, веса и т. д.).

Зная служебное назначение каждого звена кинематических цепей маши-

ны или ее механизмов, закон движения, характер, величину действующих на

него сил и ряд других факторов (среда, в которой должны работать звенья и т.

д.), выбирают материал для каждого звена. Путем расчета определяются конструктивные формы, т. е. превращают их в детали машины.

Для того чтобы детали, несущие исполнительные поверхности машины и

ее механизмов, а также и все другие, выполняющие функции звеньев ее кине-

матических цепей, двигались в соответствии с требуемым законом их относи-

тельного движения и занимали одни относительно других требуемые положе-

ния, их соединяют при помощи различного рода других деталей в виде корпу-

сов, станин, коробок, кронштейнов и т. д., которые называют базирующими де-

Конструктивные формы каждой детали машины и ее механизмов созда-

ются, исходя из ее служебного назначения в машине, путем ограничения необ-

ходимого количества выбранного материала различными поверхностями и их

сочетаниями.

С точки зрения технологии изготовления будущей детали, например, ва-

лика, использование цилиндрических поверхностей более экономично, поэтому

для опорных частей валика выбирают две цилиндрические поверхности.

С точки технологии механической обработки валика, его целесообразно

было бы сделать цилиндрическим одного диаметра на всю длину. Однако с

точки зрения монтажа зубчатых колес и их обработки такая конструкция была

бы менее экономичной. Исходя из этого, останавливаемся для данных произ-

водственных условий на конструкции ступенчатого валика. Выбор поверхно-

стей, которые должны ограничить кусок материала, и придание ему требуемой

формы еще не означает, что валик будет правильно выполнять свое служебное

назначение в машине.

Поверхности, относительно которых определяется положение других по-

верхностей, принято называть базирующими или, короче, базами.

Следовательно, при разработке конструктивных форм детали вначале

необходимо создать поверхности, принимаемые за ее базы, тогда все остальные поверхности должны занять относительно их положение, требуемое служебным

назначением детали в машине.

Деталь является пространственным телом, поэтому, у нее должно быть в

общем случае, как это следует из теоретической механики, три базирующие по-

верхности, представляющие собой систему координат. Относительно этих ко-

ординатных плоскостей определяется положение всех остальных поверхностей,

образующих конструктивные формы детали.

Таким образом, каждая деталь должна иметь свои системы координат.

Как правило, в качестве координатных плоскостей обычно используются по-

верхности основных баз и их оси. Относительно этих координатных плоскостей

определяется положение всех остальных поверхностей детали, при помощи ко-

торых создаются ее конструктивные формы (вспомогательные базы, исполни-

тельные и свободные поверхности).

Из изложенного следует, что создание конструктивных форм деталей

следует разрабатывать, учитывая из их служебное назначение и требования

технологии их наиболее экономичного изготовления и монтажа.

В соответствии с этим под деталью следует понимать необходимое

количество выбранного материала, ограниченного рядом поверхностей или их

сочетаний, расположенных одни относительно других (выбранных за базы), ис-

ходя из служебного назначения детали в машине и наиболее экономичной тех-

нологии изготовления и монтажа.

Построение машины осуществляется путем соединения составляющих ее

деталей. Базирующая деталь машины должна соединять и обеспечивать тре-

буемые служебным назначением машины относительные положения (расстоя-

ния и повороты) всех составляющих машину сборочных единиц и деталей.

Соединение деталей и сборочных единиц осуществляется путем приведе-

ния в соприкосновение поверхностей основных баз присоединяемой сборочной

единицы или детали с вспомогательными базами детали, к которой они присое-

диняются (базирующей). Следовательно, поверхности основных баз присоеди-

няемой детали и вспомогательных баз присоединяемой детали и вспомогатель-

ных баз базирующей детали, к которой они присоединяются, являются нега-

Это очень важное обстоятельство, играющее большую роль при разра-

ботке конструктивных форм деталей, разработке технологии их изготовления и

конструирования приспособлений.

Необходимость в правильных геометрических формах поверхностей де-

талей появляется тогда, когда детали оставляется хотя бы одна степень свободы

для выполнения служебного назначения в машине.

В подобных случаях между поверхностями основных баз такой детали и

вспомогательных баз детали, к которой они присоединяются, возникает трение,

порождающее износ сопряженных поверхностей. Износ вызывает, в свою оче-

редь, изменение размеров и положения поверхностей основных и вспомога-

тельных баз сопрягаемых деталей, а, следовательно, изменение расстояний и

поворотов этих поверхностей (положения), а тем самым и относительного по-

ложения и движения деталей. В конечном итоге машина или ее механизмы не

смогут выполнять экономично, а иногда и физически свое служебное назначе-

ние. Поэтому в дополнение к необходимости получения поверхностей деталей

правильной геометрической формы добавляется требование обеспечения тре-

буемой степени их шероховатости и качества поверхностного слоя материала.

Одной из задач технологии машиностроения является экономичное полу-

чение деталей, имеющих требуемую точность размеров, поворота, геометриче-

ской формы поверхностей, требуемую их шероховатость и качество поверхно-

стного слоя материала. Для этого исполнительные поверхности основных и

вспомогательных баз деталей, как правило, подвергают обработке.

Качество машины. Для того чтобы машина экономично выполняла свое

служебное назначение, она должна обладать необходимым для этого качеством.

Под качеством машины понимается совокупность ее свойств, опреде-

ляющих соответствие ее служебному назначению и отличающих машину от

Качество каждой машины характеризуется рядом методически правиль-

но отработанных показателей, на каждый из которых должна быть установлена

количественная величина с допуском на ее отклонения, оправдываемые эконо-

мичностью выполнения машиной ее служебного назначения.

Система качественных показателей с установленными на них количест-

венными данными и допусками, описывающая служебное назначение машины,

получила название технических условий и норм точности на приемку готовой

К основным показателям качества машины относятся: стабильность вы-

полнения машиной ее служебного назначения; качество выпускаемой машиной

продукции, долговечность физическая, т. е. способность сохранять первона-

чальное качество во времени; долговечность моральная, или способность эко-

номично выполнять служебное назначение во времени; производительность,

безопасность работы; удобство и простота обслуживания управления; уровень

шума, коэффициент полезного действия, степень механизации и автоматизации

и т. д. Основные технические характеристики и качественные показатели неко-

торых машин и составляющих их частей, выпускаемых в больших количествах,

стандартизованы.

Точность обработки. Под точностью обработки понимают степень со-

ответствия обработанной детали техническим требованиям чертежа в отноше-

нии точности размеров, формы и расположения поверхностей. Все детали, у ко-

торых отклонения показателей точности лежат в пределах, установленных до-

пусков, пригодны для работы.

В единичном и мелкосерийном производстве точность деталей получают

методом пробных рабочих ходов, т. е. последовательным снятием слоя припус-

ка, сопровождаемым соответствующими измерениями. В условиях мелкосе-

рийного и среднесерийного производства применяют обработку с настройкой

станка по первой пробной детали партии или по эталонной детали. В круп-

носерийном и массовом производствах точность детали обеспечивают методом

автоматического получения размеров на предварительно настроенных станках-

автоматах, полуавтоматах или автоматических линиях.

В условиях автоматизированного производства в станок встраивают на-

ладчики, представляющий собой измерительное и регулировочное устройство,

которое в случае выхода размера обрабатываемой поверхности за пределы поля

допуска автоматически вносит поправку в систему «станок-приспособление –

инструмент-заготовка» (технологическая система) и подналаживают ее на за-

данный размер.

На станках, выполняющих обработку за несколько рабочих ходов (на-

пример, на круглошлифовальных), применяют устройства активного контроля,

которые измеряют размер детали в процессе обработки. При достижении за-

данного размера устройства автоматически отключают подачу инструмента.

Применение этих устройств повышает точность и производительность обра-

ботки путем уменьшения времени на вспомогательные операции. Эта цель дос-

тигается также путем оснащения металлорежущих станков системами адаптив-

ного управления процессом обработки. Система состоит из датчиков получения

информации о ходе обработки и регулирующих устройств, вносящих в нее по-

На точность обработки влияют: погрешности станка и его износ; по-

грешность изготовления инструментов, приспособлений и их износ; погреш-

ность установки заготовки на станке; погрешности, возникающие при установ-

ке инструментов и их настройке на заданный размер; деформации технологиче-

ской системы, возникающие под действием сил резания; температурные де-

формации технологической системы; деформация заготовки под действием

собственной массы, сил зажима и перераспределения внутренних напряжений;

погрешности измерения, которые обусловлены неточностью средств измере-

ния, их износом и деформациями и др. Эти факторы непрерывно изменяются в

процессе обработки, вследствие чего появляются погрешности обработки.

Собственная точность станков (в ненагруженном состоянии) регламенти-

рована стандартом для всех типов станков. При эксплуатации происходит из-

нашивание станка, в результате чего собственная точность его снижается.

Износ режущего инструмента влияет на точность обработки в партии за-

готовок при одной настройке станка (например, при растачивании отверстий

износ резца приводит к появлению конусообразности).

Погрешности, допущенные при изготовлении и износе приспособления,

приводят к неправильной установке заготовки и являются причинами появле-

ния погрешностей обработки. В процессе обработки под действием сил резания

и создаваемых ими моментов элементы технологической системы изменяют

относительное пространственное положение из-за наличия стыков и зазоров в

парах сопрягаемых деталей и собственных деформаций деталей.

В результате возникают погрешности обработки. Упругая деформация

технологической системы зависит от силы резания и жесткости этой системы.

Жесткостью J технологической системы называют отношение приращения

нагрузки ∆Р к вызванному им приращению ∆У мм, упругого обжатия: J =∆Р/∆У

Применительно к станку под жесткостью понимают его способность со-

противляться появлению упругих обжатий под действием сил резания. Как

правило, жесткость станка определяет экспериментальным путем.

Процесс резания сопровождается выделением теплоты. В результате из-

меняется температурный режим технологической системы, что приводит к до-

полнительным, пространственным перемещениям элементов станка вследствие

изменения линейных размеров деталей и появлению погрешностей обработки.

Заготовки, имеющие малую жесткость (L/D>10, где L – длина заготовки; D – ее

диаметр), под действием сил резания и их моментов деформируются. Напри-

мер, длинный вал небольшого диаметра при обработке на токарном станке в

центрах прогибается. В результате диаметр на концах вала получают меньше,

чем в середине, т. е. возникает бочкообразность.

В отливках и кованых заготовках в результате неравномерного остывания

возникают внутренние напряжения. При резании вследствие снятия верхних

слоев материала заготовки происходят перераспределение внутренних напря-

жений и ее деформация. Для уменьшения напряжений отливки подвергают ес-

тественному или искусственному старению. Внутренние напряжения появля-

ются в заготовке при термической обработке, холодной правке и сварке.

Под достижимой точностью понимают точность, которая может быть

обеспечена при обработке заготовки рабочим высокой квалификации на станке,

находящемся в нормальном состоянии, при максимально возможных затратах

труда и времени на обработку.

Экономическая точность – такая точность, для обеспечения которой за-

траты при данном способе обработки будут меньше, чем при использовании

другого способа обработки той же поверхности.

Точность деталей. Точность деталей – это степень приближения формы

детали к геометрически правильному ее прототипу. За меру точности детали

принимают значения допусков и отклонений от теоретических значений пока-

зателей точности, которыми она характеризуется.

Стандартами, введенными в действие в качестве государственных стан-

дартов, а также ГОСТ 2.308-79, ГОСТ 24642-81, ГОСТ 24643-81 установлены

следующие показатели точности: 1) точность размеров, т. е. расстояний между

различными элементами деталей и сборочных единиц; 2) отклонение формы, т.

е. отклонение (допуск) формы реальной поверхности или реального профиля от

формы номинальной поверхности или номинального профиля; 3) отклонение

расположения поверхностей и осей детали, т. е. отклонение (допуск) реального

расположения рассматриваемого элемента от его номинального расположения.

Шероховатость поверхности не входит в отклонение формы. Иногда до-

пускается нормировать отклонение формы, включая шероховатость поверхно-

сти. Волнистость включается в отклонение формы. В обоснованных случаях

допускается нормировать отдельно волнистость поверхности или часть откло-

нения формы без учета волнистости.

Точность размеров детали характеризуется допуском Т, который определяют как разность двух предельных (наибольшего и наименьшего) допустимых

размеров. Величина допуска Т зависит от размера квалитета. Например, размер,

выполняемый по 7-му квалитету, более точный, чем такой же размер, выпол-

ненный по 8-му или 10-му квалитету.

Точность размеров на чертежах проставляют условными обозначениями

поля допуска (40Н7; 50К5) или предельных отклонений в миллиметрах, или ус-

ловными обозначениями полей допусков и отклонений.

Точность размеров грубее 13-го квалитета оговаривают в технических

требованиях, где указывают, по какому квалитету их следует выполнять. На-

пример, «неуказанные предельные отклонения размеров: отверстий Н14, валов

Точность формы характеризуется допуском Т или отклонениями от за-

данной геометрической формы. Стандарт рассматривает допуски и отклонения

двух форм поверхностей; цилиндрических и плоских. Количественно отклоне-

ние формы оценивают наибольшим расстоянием от точек реальной поверхно-

сти (профиля) до прилегающей поверхности (профилю).

Допуск формы – наибольшее допустимое значение отклонения формы.

Отклонения формы отсчитывают по нормали от прилегающих прямых, плос-

костей, поверхностей и профиля.

Отклонение от плоскостности – наибольшее расстояние от точек реаль-

ной поверхности до прилегающей плоскости в пределах нормируемого участ-

ка. Частными видами отклонений от плоскости являются выпуклость и вогну-

Отклонение формы цилиндрических поверхностей характеризуются до-

пуском цилиндричности, который включает отклонение от круглости попереч-

ных сечений и профиля продольного сечения. Частными видами отклонений от

округлости являются овальность и огранка. Отклонения профиля в продольном

сечении характеризуются допуском прямолинейности образующих и разделя-

ются на конусообразность, бочкообразность и седлообразность.

Точность расположения осей характеризуется отклонениями расположе-

ния. При оценке отклонений расположения отклонения формы рассматривае-

мых и базовых элементов исключают из рассмотрения. При этом реальные по-

верхности (профили) заменяют прилегающими, а за оси плоскости симметрии и

центры реальных поверхностей или профилей принимают оси, плоскости сим-

метрии и центры прилегающих элементов.

Отклонение от параллельности плоскостей – разность наибольшего и рас-

стояний между плоскостями в пределах нормируемого участка.

Отклонение от параллельности осей (или прямых) в пространстве –

геометрическая сумма отклонений от параллельности проекций осей (пря-

мых) в двух взаимно перпендикулярных плоскостях; одна из этих плоскостей

является общей плоскостью осей.

Отклонение от перпендикулярности плоскостей – отклонение угла между

плоскостями от прямого угла (90°), выраженное в линейных единицах на длине

нормируемого участка.

Отклонение от соосности относительно общей оси – наибольшее рас-

стояние (∆1,∆2,...) между осью рассматриваемой поверхности вращения и об-

щей осью двух или нескольких поверхностей вращения на длине нормируемого

участка. Кроме термина «отклонение от соосности», в отдельных случаях мо-

жет применяться понятие отклонения от концентричности ∆ – расстояние в за-

данной плоскости между центрами профилей (линий), имеющих номинальную

форму окружности. Допуск концентричности Т определяется в диаметральном

и радиусном выражениях.

Отклонение от симметричности относительно базового элемента – это

наибольшее расстояние ∆ между плоскостью симметрии (осью) рас-

сматриваемого элемента (или элементов) и плоскостью симметрии базового

элемента в пределах нормируемого участка. Этот допуск определяется в диа-

метральном и радиусном выражениях. Отклонение от симметричности относи-

тельно базовой оси определяется в плоскости, проходящей через базовую ось

перпендикулярно к плоскости симметрии.

Позиционное отклонение – наибольшее расстояние ∆ между реальным

расположением элемента (его центра, оси или плоскости симметрии) и его но-

минальным расположением в пределах нормируемого участка. Позиционный

допуск определяется в диаметральном и радиусном выражениях.

Отклонения от пересечения осей – наименьшее расстояние ∆ между ося-

ми, номинально пересекающимися.

Радиальное биение – разность ∆ наибольшего и наименьшего расстояний

от точек реального профиля поверхности вращения до базовой оси в сечении

плоскостью, перпендикулярно к базовой оси. Радиальное биение является ре-

зультатом совместного проявления отклонений от круглости профиля рассмат-

риваемого сечения и отклонения его центра относительно базовой оси. Оно не

включает в себя отклонение формы и расположения образующей поверхности

вращения.

Торцовое биение – разность ∆ наибольшего и наименьшего расстояний от

точек реального профиля торцовой поверхности до плоскости, пер-

пендикулярной к базовой оси.

Допуски формы и расположения указывают на чертежах согласно ГОСТ

2.308–79. Вид допуска формы или расположения должен быть обозначен на

чертеже знаком. Для допусков расположения и суммарных допусков формы и

расположения дополнительно указывают базы, относительно которых задается

допуск, и оговаривают зависимые допуски расположения или формы. Знак и

значение допуска или обозначение базы вписывают в рамку допуска, разделен-

ную на два или три поля, в следующем порядке (слева направо): знак допуска,

значение допуска в миллиметрах, буквенное обозначение базы (баз).

Рамки допуска вычерчивают сплошными тонкими линиями или линиями

одинаковой толщины с цифрами. Высота цифр и букв, вписываемых в рамки,

должна быть равна размеру шрифта размерных чисел. Допуски формы и распо-

ложения поверхностей выполняют предпочтительно в горизонтальном положе-

нии, при необходимости рамку располагают вертикально так, чтобы данные на-

ходились с правой стороны чертежа.

Линией, оканчивающейся стрелкой, рамку допуска соединяют с контур-

ной или выносной линией, продолжающей контурную линию элемента, огра-

ниченного допуском. Соединительная линия должна быть прямой или ломаной

а ее конец, оканчивающийся стрелкой, должен быть обращен к контурной (вы-

носной) линии элемента, ограниченного допуском в направлении измерения

отклонения.

В случаях, когда это оправдано удобствами выполнения чертежа, допус-

кается: начинать соединительную линию от второй (задней) части рамки до-

пуска; заканчивать соединительную линию стрелкой на выносной линии, про-

должающей контурную линию элемента, и со стороны материала детали.

Если допуск относится к поверхности или ее профилю (линии), а не к оси

элемента, то стрелку располагают на достаточном расстоянии: от конца раз-

мерной линии. Если допуск относится к оси или плоскости симметрии опреде-

ленного элемента, то конец соединительной линии должен совпадать с продол-

жением размерной линии соответствующего размера. При недостатке места на

чертеже стрелку размерной линии можно заменить стрелкой выносной линии.

Если размер элемента уже указан один раз на других размерных линиях

данного элемента, используемых для обозначения допуска формы или распо-

ложения, то он не указывается. Размерную линию без размера следует рассмат-

ривать как составную часть этого обозначения. Если допуск относится к боко-

вой поверхности резьбы, то рамку допуска соединяют. Если допуск относится к

оси резьбы, то рамку допуска соединяют с размерной линией. Если допуск от-

носится к общей оси или плоскости симметрии и из чертежа ясно, для каких

элементов данная ось (плоскость) является общей, то соединительную линию

проводят к общей оси.

Величина допуска действительна для всей поверхности или длины эле-

мента. Если допуск должен быть отнесен к определенной ограниченной длине,

которая может находиться в любом месте ограниченного допуском элемента, то

длину нормируемого участка в миллиметрах вписывают после значения допус-

ка и отделяют от него наклонной линией.

Если допуск задан таким образом на плоскости, данный нормируемый

участок действителен для произвольного расположения и направления на по-

верхности. Если необходимо задать допуск по всему элементу и одновременно

задать допуск на определенном участке, то второй допуск указывают под пер-

вым в объединенной рамке допуска.

Если допуск должен относиться к нормируемому участку, располо-

женному в определенном месте элемента, то нормируемый участок обозначают

и штрихпунктирной линией, ограничив ее размерами. Дополнительные данные

пишут над или под рамкой допуска.

Если необходимо для одного элемента задать два разных вида допуска

объединяют и располагают их в рамке допуска. Если для поверхности надо од-

новременно указать обозначение допуска формы или расположения и буквен-

ное обозначение поверхности, используемое для нормирования другого допус-

ка, то рамки с обоими обозначениями располагают рядом на одной соединительной линии.

Повторяющиеся одинаковые или разные виды допусков обозначаем од-

ним и тем же символом, имеющие одни и те же значения и относящиеся к од-

ним и тем же базам указывают один раз в рамке, от которой отходит одна со-

единительная линия, разветвляемая затем ко всем нормируемым элементам.

Базы обозначают зачерненным треугольником, который линией сое-

диняют с рамкой допуска. Треугольник, обозначающий базу, должен быть рав-

носторонним с высотой, равной размеру шрифта размерных чисел. Если тре-

угольник нельзя простым и наглядным способом соединить с рамкой допуска,

то базу обозначают прописной буквой в рамке и эту букву вписывают в третье

поле рамки допуска.

Если базой является поверхность или прямая этой поверхности, а не ось

элемента, то треугольник должен располагаться на достаточном расстоянии от

конца размерной линии. Если базой является ось или плоскость симметрии, то

треугольник располагают в конце размерной линии соответствующего размера

(диаметра, ширины) элемента, при этом треугольник может заменить размер-

ную стрелку.

Если базой является общая ось или плоскость симметрии и из чертежа

ясно, для каких элементов данная ось (плоскость) является общей, то треуголь-

ник располагают на общей оси. Если базой является только часть или опреде-

ленное место элемента, то ее расположение ограничивают размерами.

Если два или несколько элементов образует общую базу и их после-

довательность не имеет значения (например, они имеют общую ось или плос-

кость симметрии), то каждый элемент обозначают самостоятельно и обе (все)

буквы вписывают подряд в третье поле рамки допуска. Если назначают допуск

расположения для двух одинаковых элементов, и нет необходимости или воз-

можности (у симметричной детали) различать элементы и выбрать один за базу,

то вместо зачерненного треугольника используют стрелку.

Таким образом, необходимо следующее:

1) измерение точности детали должно начинаться с измерения микро-

неровностей, затем должны измеряться микронеровности, отклонения от тре-

буемого поворота и, наконец, точность расстояния или размера (если не пред-

принимать особых мер для исключения влияния соответствующих отклоне-

2) допуски на расстояния и размеры поверхностей детали должны быть

больше допусков на величину отклонений от требуемого поворота поверхно-

стей, которые, в свою очередь, должны быть больше допусков на микрогеомет-

рические отклонения, а последние больше допусков на – микрогеометрические

отклонения, зависящие от назначаемого класса шероховатости поверхностей.

Лекция 3. Рабочая документация технологического процесса

Согласно ГОСТ 3.1102–81 Единой системы технологической документа-

ции (ЕСТД) «Комплектность документов в зависимости от типа производства»

документы, необходимые для описания технологических процессов, подбирают

в зависимости от типа производства. Кроме вышеперечисленных видов тех-

нологических процессов по организации (единичной и типовой), ГОСТ 14201–

83 установлено, что каждый вид технологического процесса по степени детали-

операционный.

Маршрутный технологический процесс – процесс, выполняемый по до-

кументации, в которой излагается содержание операций без указаний перехо-

дов и режимов обработки.

Операционный технологический процесс – процесс, выполняемый по до-

кументации, в которой излагается содержание операций с указанием переходов

и режимов обработки.

Маршрутно-операционный процесс– процесс, выполняемый по докумен-

тации, в которой излагается содержание отдельных операций без указаний пе-

реходов и режимов обработки.

Комплект форм документов общего назначения для технологического

процесса может содержать: маршрутную карту (МК); операционную карту

(ОК); карту эскизов (КЗ); ведомость деталей к типовому (групповому) техноло-

гическому процессу (операции) (ВТП, ВТО); сводную операционную карту

(СОК) и др.

Маршрутная карта (ГОСТ 3.1119–83) содержит описание технологиче-

ского процесса изготовления и контроля детали по всем операциям и техноло-

гической последовательности. В ней указывают соответствующие данные об

оборудовании, оснастке, материальных и трудовых нормативах.

В операционную карту вносят описание операции, расчлененной на пере-

ходы, с указанием оборудования, оснастки и режимов обработки. ОК применя-

ют в серийном и массовом производстве. К комплекту ОК на все операции тех-

нологического процесса прилагают маршрутную карту. При проектировании

операций для станков с ЧПУ составляют расчетно-технологическую карту, в

которую заносят необходимые данные о траектории движения инструмента и

режимах обработки. На основе этой карты разрабатывают управляющую про-

грамму станком.

МК и ОК составляют на основе данных чертежей, производственной про-

граммы, спецификации, описания конструкций, технических условий и сле-

дующих руководящих и нормативных материалов: паспорта металлорежущих

станков; каталогов станков, режущих и вспомогательных инструментов, альбо-

мов нормальных приспособлений; руководящих материалов по режимам реза-

ния; нормативов подготовительно-заключительного и вспомогательного

МК имеет определенную форму. В ее верхнюю часть заносят данные об

изготовляемой детали и заготовке, в нижнюю – номер, наименование и содер-

жание операций, а также необходимые для выполнения операций коды, наиме-

нования и данные станков, приспособлений, режущих и измерительных инст-

рументов, указывают штучное время, число рабочих и подготовительно-

заключительное время. На основании технологических карт осуществляют

дальнейшее расчеты, связанные с проектированием технологического процесса:

качество требуемого оборудования, численность рабочих и размер заработной

платы и т. д. К технологической документации относятся рабочие чертежи сбо-

рочных единиц и деталей, приспособлений, режущего и измерительного инст-

румента и т.д.

Карты эскизов и схем наладок содержат графическую иллюстрацию тех-

нологического процесса, На каждую операцию вычерчивают эскиз. Эскизы вы-

полняют по определенным правилам: деталь на эскизах вычерчивают в поло-

жении обработки на станке. При многопозиционной обработке эскиз выполня-

ют для каждой позиции отдельно. Обрабатываемые на операции (позиции)

поверхности указывают толстыми линиями, осевые поверхности – условными

обозначениями. На поверхности проставляют размеры и расстояния от баз с

допусками, а на базовых поверхностях показывают обозначения элементов по

ГОСТ 3.1107–81.

В схемах наладок показывают элементы конструкции установочных и

зажимных элементов во взаимосвязи с пространственными положениями заго-

товки и инструмента. Инструменты показывают в конечном положении обра-

ботки, а направления движения заготовки – стрелками в схемах револьверной

операции указывают позиции револьверной головки с инструментами. В них в

конце обработки приводят таблицы и другие надписи. На чертеже наладок и

карт эскизов указывают место крепления инструментов, наименование и номер

операции, модель станка. Для агрегатных станков указывают число головок де-

Выбор вида технологического процесса. Классификация деталей. Тех-

нологический процесс изготовления детали разрабатывался на основе имеюще-

гося типового или группового технологического процесса. Групповой техноло-

гический процесс разрабатывают как единичный на основе использования ра-

нее принятых решений, содержащихся в соответствующих единичных техноло-

гических процессах изготовления аналогичных деталей. Деталь относят к дей-

ствующему типовому, групповому или единичному технологическому процес-

су на основе ее ранее нормированного технологического кода.Этот код разра-

батывают на основе технологического классификатора.

Технологический классификатор деталей (ТКД) машиностроения прибо-

ростроения является логическим продолжением и дополнением классификатора

ЕСКД (классов 71-76), разработанного в качестве информационной части ГОСТ

2.201–80. Этот стандарт устанавливает структуру обозначения изделия и ос-

новного конструкторского документа. Четырехбуквенный код организации-

разработчика назначают по кодификации организаций-разработчиков или ука-

зывают код, выделенный для организованного присвоения обозначения (эти че-

тыре знака конструкторского кода при курсовом проектировании не назнача-

ются). Порядковый номер регистрации присваивают по классификационной ха-

рактеристик от 001 до 999 в пределах кода организации-разработчика или кода

для централизованного присвоения (в курсовых проектов назначается). Код классификационной характеристики присваивают изделию или документу по

классификатору ЕСКД. Классификатор ЕСКД позволяет: установить единую

государственную классификационную систему обозначения изделий и конструкторских документов для обеспечения единого порядка оформления, учета,

хранения и обращения этих документов; обеспечить возможность использовать

конструкторскую документации, разработанную другими организациями (без

ее переоформления); внедрить средства вычислительной техники в сферу про-

ектирования управления; применять коды деталей по классам совместно с тех-

нологическими при решении задач технологической подготовки производства с

использованием средств электронно-вычислительной техники (САПР, ГПС).

Классификатор ЕСКД включает 100 классов, из которых 51 класс пока

резерв, в котором могут быть размещены новые виды.

Классификатор ЕСКД состоит из следующих документов:

1. Введение.

2. Классы классификатора ЕСКД (49 классов; каждый класс издан

отдельной книгой).

3. Алфавитно-предметный указатель классов деталей (классы 71-76).

4. Термины, принятые в классах деталей (классы 71-76).

5. Иллюстрированный определитель деталей (классы 72-76).

Классы 71-76 охватывают детали всех отраслей промышленности основ-

ного и вспомогательного производства:

класс 71: детали – тела вращения типа колес, дисков, шкивов, блоков,

стержней втулок, стаканов, колонок, валов, осей, штоков, шпинделей и др.;

класс 72: детали – тела вращения с элементами зубчатого зацепления;

трубы, шланги, проволочки, разрезные секторы, сегменты; изогнутые из лис-

тов, полос и лент; аэродинамические; корпусные, опорные, емкостные; под-

шипников;

класс 73: детали – не тела вращения корпусные, опорные, емкостные;

класс 74: детали – не тела вращения: плоскостные; рычажные, грузовые,

тяговые, аэрогидродинамические; изогнутые из листов, полос и лент; профиль-

ные; трубы;

класс 75: детали - тела вращения и (или) не тела вращения, кулачковые,

карданные, с элементами зацепления, арматуры, санитарно-технические, раз-

ветвленные, пружинные, ручки, посуды, оптические, крепежные;

класс 76: детали технологической оснастки, инструмента.

Технологический классификатор деталей (ТКД) создает предпосылки для

решения ряда задач, направленных на снижение трудоемкости и сокращение

сроков технологической подготовки производства:

анализ номенклатуры деталей по их конструкторско-технологическим

характеристикам;

группирование деталей по конструкторско-технологическому подобию

для разработки типовых и групповых технологических процессов с использо-

ванием ЭВМ; 25

унификация и стандартизация деталей и технологических процессов, ра-

циональный выбор типов технологического оборудования;

тематический поиск и использование ранее разработанных типовых или

групповых технологических процессов; автоматизация проектирования деталей

и технологических процессов их изготовления.

ТКД представляет собой систематизированный свод наименований об-

щих признаков деталей, их составляющих частных признаков и их кодовых

обозначений в виде классификационных таблиц. Структура полного конструк-

торско-технологического кода детали состоит из обозначения детали и техно-

логического кода длиной четырнадцать знаков. Технологический код состоит

из двух частей: постоянная часть из шести знаков – кодовое обозначение клас-

сификационных группировок основных признаков; переменная часть из восьми

знаков – кодовое обозначение классификационных группировок признаков, ха-

рактеризующих вид детали по технологическому методу ее изготовления.

Глава 2. Конструкционные материалы, применяемые в машиностроении

и приборостроении

Лекция 4. Понятие о внутреннем строении металлов и сплавов

Металлы и их сплавы в твердом состоянии представляют собой кри-

сталлические тела, в которых атомы располагаются относительно друг друга в

определенном, геометрически правильном порядке, образуя кристаллическую

структуру. Такое закономерное, упорядоченное пространственное размещение

атомов называется кристаллической решеткой.

В кристаллической решетке можно выделить элемент объема, об-

разованный минимальным количеством атомов, многократное повторение ко-

торого в пространстве по трем непараллельным направлениям позволяет вос-

произвести весь кристалл. Такой элементарный объем, характеризующий осо-

бенности строения данного типа кристалла, называется элементарной ячейкой.

Для ее описания используют шесть величин: три ребра ячейки а, b, с и три угла

между ними α, β, γ. Эти величины называются параметрами элементарной

Поскольку атомы стремятся занять наименьший объем, существуют всего

14 типов кристаллических решеток, свойственных элементам периодической

системы. Наиболее распространенными среди металлов являются следующие

типы решеток:

– объемно-центрированная кубическая (ОЦК) – атомы расположены в вер-

шинах и в центре куба; такую решетку имеют Nа, V, Nb, Feα, К, Сг, W и другие

– гранецентрированная кубическая (ГЦК) – атомы расположены в вершинах

куба и в центре каждой грани; решетку такого типа имеют Рв, А1, Ni, Аg, Аu,

Сu, Со, Feγ и другие металлы;

– гексагональная плотно упакованная (ГПУ) – четырнадцать атомов распо-

ложены в вершинах и центре шестиугольных оснований призмы, а три – в

средней плоскости призмы; такую решетку имеют Мg, Ti, Rе, Zn, Hf, Ве, Са и

другие металлы (рис.1).

Рис. 1. Кристаллическое строение металлов: а – схема кристаллической решетки;

б – объемно-центрированная кубическая; в – гранецентрированная кубическая;

г – гексагональная плотно упакованная

Кристаллическую решетку характеризуют следующие основные парамет-

ры: период, координационное число, базис и коэффициент компактности.

Периодом решетки называется расстояние между двумя соседними па-

раллельными кристаллографическими плоскостями в элементарной ячейке ре-

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЯДЕРНЫЙ УНИВЕРСИТЕТ «МИФИ»

В. А. Ермолаев

ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ В МАШИНОСТРОЕНИИ

для студентов высших учебных заведений

Москва 2011

УДК 669.018.29.004.14(075.8) ББК 34.5я 73 Е-74

Ермолаев В. А. ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ В МАШИНОСТРОЕНИИ. Конспект лекций. М.: НИЯУ МИФИ, 2011. – 264 с.

Рассмотрены современные и перспективные технологические способы производства чёрных и цветных металлов, изготовление заготовок и деталей машин из металлов и неметаллических материалов: литьём, обработкой добавлением, сваркой, резанием и другими способами.

Пособие предназначено для студентов очной, вечерней и заочной форм обучения по специальности 151001 – Технология машиностроения.

Подготовлено в рамках Программы создания и развития НИЯУ МИФИ.

Рецензент: В.С. Гацков , канд. техн. наук, доцент НГТИ

Редактор Е.Н. Кочубей

Макет подготовлен к печати Е.Н. Кочубей

Национальный исследовательский ядерный университет «МИФИ». 115409, Москва, Каширское шоссе, 31.

ООО «Полиграфический комплекс «Курчатовский». 144000, Московская область, г. Электросталь, ул. Красная, д. 42

Тема 1. ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ

В МАШИНОСТРОИТЕЛЬНОМ ПРОИЗВОДСТВЕ................................

1.1. Понятие о технологии........................................................................

1.2. Изделие как объект производства....................................................

1.3. Обработка деталей...........................................................................

Тема 2. МАТЕРИАЛЫ, ПРИМЕНЯЕМЫЕ

В МАШИНОСТРОЕНИИ..........................................................................

2.1. Производство чугуна.......................................................................

2.2. Производство стали.........................................................................

2.3. Производство цветных металлов....................................................

Вопросы для самоконтроля...................................................................

Тема 3. ЛИТЕЙНОЕ ПРОИЗВОДСТВО.................................................

3.1. Литье металлов как технологический процесс..............................

3.2. Литейные формы и их конструкции...............................................

3.3. Получение отливок..........................................................................

3.4. Методы литья и области их применения.......................................

Тема 4. ОБРАБОТКА МЕТАЛЛОВ ДАВЛЕНИЕМ................................

4.1. Сущность обработки металлов давлением....................................

4.2. Классификация процессов обработки металлов

давлением и их краткая характеристика........................................

4.3. Прокатывание (прокат) металлов...................................................

4.4. Прессование металлов...................................................................

4.5. Волочение металлов......................................................................

4.6. Ковка металлов...............................................................................

4.7. Объемная штамповка металла.....................................................

4.8. Листовая (плоская) штамповка.....................................................

Вопросы для самопроверки..................................................................

Тема 5. ПОНЯТИЕ О ТЕХНОЛОГИИ ПОРОШКОВОЙ

МЕТАЛЛУРГИИ......................................................................................

5.1. Метод технологии порошковой металлургии.............................

5.2. Прессование металлических порошков.......................................

Вопросы для самоконтроля..................................................................

Тема 6. ОСНОВНЫЕ ПОНЯТИЯ О СВАРКЕ МЕТАЛЛОВ................

6.1. Общие сведения. Развитие сварки, ее направления

и классификация............................................................................

6.2. Виды сварных соединений............................................................

6.3. Подготовка металла под сварку....................................................

6.4. Электрическая сварочная дуга.....................................................

6.5. Металлургические процессы при сварке.....................................

6.6. Электроды для дуговой сварки.....................................................

6.7. Оборудование для сварки металлов.............................................

Вопросы для самоконтроля..................................................................

Тема 7. ВИДЫ СВАРКИ..........................................................................

7.1. Ручная дуговая сварка...................................................................

7.2. Автоматическая и полуавтоматическая сварки...........................

7.3. Газовая сварка................................................................................

7.4. Кислородная резка.........................................................................

Вопросы для самоконтроля..................................................................

Тема 8. МЕХАНИЧЕСКАЯ ОБРАБОТКА ЗАГОТОВОК

РЕЗАНИЕМ...............................................................................................

8.1. Методы обработки заготовок резанием.......................................

8.2. Обработка заготовок на токарных станках с ЧПУ......................

Вопросы для самоконтроля..................................................................

Тема 9. ЭЛЕКТРОФИЗИЧЕСКИЕ, ЭЛЕКТРОХИМИЧЕСКИЕ

И ТЕРМИЧЕСКИЕ МЕТОДЫ ОБРАБОТКИ ДЕТАЛЕЙ....................

9.1. Характеристика электрофизических

и электрохимических методов обработки...................................

9.2. Термическая обработка в технологическом

процессе изготовления изделий....................................................

Вопросы для самоконтроля..................................................................

Тема 10. ИЗНОСОСТОЙКИЕ И АНТИКОРРОЗИОННЫЕ

ПОКРЫТИЯ..............................................................................................

Вопросы для самоконтроля..................................................................

Тема 11. ПАЯНЫЕ И КЛЕЕВЫЕ СОЕДИНЕНИЯ................................

11.1. Пайка.............................................................................................

11.2. Склеивание...................................................................................

Вопросы для самоконтроля..................................................................

Тема 12. ТЕХНОЛОГИЧЕСКАЯ ПОДГОТОВКА

ПРОИЗВОДСТВА ИЗДЕЛИЙ.................................................................

12.1. Цели и задачи технологической подготовки

производства.................................................................................

12.2. Технологическая документация.................................................

12.3. Методы обеспечения технологичности

и конкурентоспособности изделий машиностроения................

Вопросы для самоконтроля..................................................................

Литература................................................................................................

Тема 1. ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ В МАШИНОСТРОИТЕЛЬНОМ ПРОИЗВОДСТВЕ

Предметом курса «Технологические процессы в машиностроительном производстве» (ТПМ) являются современные рациональные и распространенные в промышленности прогрессивные способы формообразования заготовок и деталей машин.

Курс ТПМ занимает в становлении современного инженерамашиностроителя особое место, так как в последующем инженер должен реализовать в металле различные конструкции машин.

Создавая конструкции машин и приборов, обеспечивая на практике их заданные характеристики и надежность работы с учетом экономических показателей, инженер должен уверенно владеть методами изготовления деталей машин и их сборки. Для этого он должен обладать глубокими технологическими знаниями.

1.1. Понятие о технологии

Технологический процесс определяется как:

1) совокупность производственных методов и процессов в определенной отрасли производства, а также научное описание спосо-

бов производства (Ожегов С.И. Толковый словарь русского языка);

2) совокупность методов изготовления, обработки, изменения свойств, состояния, формы сырья, полуфабриката, материала, осуществляемых в процессе производства продукции (Васюков И.А. Словарь иностранных слов).

В обоих определениях фигурирует ключевые слова – производ-

ственные, производства, и это вполне логично, ведь уровень жизни людей в современном обществе определяется эффективностью производства!

Первоочередной задачей отечественной экономики является по-

вышение производительности труда и качества выпускаемой про-

дукции . Это может быть достигнуто на основе высокоэффективных технологий.

Развитие и совершенствование любого производства в настоящее время связано с его автоматизацией, созданием робототехни-

ческих комплексов, широким использованием вычислительной техники, применением станков с ЧПУ. Все это составляет базу, на которой создаются автоматизированные системы управления, становятся возможными оптимизация технологических процессов и режимов обработки, создание гибких производственных систем.

Важным направлением научно-технического прогресса является также создание и широкое использование новых конструкционных материалов. В производстве широко применяют сверхчистые, сверхтвердые, жаропрочные, композиционные, порошковые, полимерные и другие материалы, позволяющие резко повысить технический уровень и надежность оборудования. Например, космический корабль «Буран» облицован термостойким композиционным материалом, легким и прочным, выдерживающим t > 1000 ° C; у атомной подлодки «Курск» стенки корпуса толщиной 200 мм из титана – твердого, прочного и легкого материала; в обрабатывающей промышленности используются ВОК – искусственные алмазы.

1.2. Изделие как объект производства

Изделия машиностроения и их составные части. Изделием

в машиностроении называется любой предмет производства, подлежащий изготовлению на предприятии. Изделием может быть машина, ее элементы в сборе и даже отдельная деталь в зависимости от того, что является продуктом конечной стадии данного производства. Например, для автомобильного завода изделием является автомобиль, для карбюраторного завода – карбюратор, для автоматического завода поршней – поршень.

Деталь – это изделие (составная часть изделия), изготовленное из однородного по наименованию и марке материала без применения сборочных операций. Характерный признак детали – отсутствие в ней разъемных и неразъемных соединений. Деталь – это первичный сборочный элемент каждой машины.

Сборочная единица – это изделие, составные части которого подлежат соединению. Характерным признаком составной части изделия с технологической точки зрения является возможность ее сборки обособленно от других элементов изделия. Составная часть

в зависимости от конструкции может состоять либо из отдельных

деталей, либо из составных частей высших порядков и деталей. Различают составные части первого, второго и более высоких порядков. Составная часть первого порядка входит непосредственно в составную часть изделия. Она состоит либо из отдельных деталей, либо из одной или нескольких составных частей второго порядка и деталей. Составная часть второго порядка входит в составную часть первого порядка. Она расчленяется на детали или на составные части третьего порядка и детали и т.д., составная часть, наивысшего порядка расчленяется только на детали. Рассмотренное деление изделия, на составные части производится по технологическому признаку.

Существует другое деление, когда изделие расчленяется на составные части по функциональному признаку. К ним можно, например, отнести механизм газораспределения двигателя, систему его смазки или охлаждения. Эти составные части изделия не являются сборочными с технологической точки зрения, так как их в большинстве случаев нельзя обособлено и полностью собрать отдельно от других элементов изделия. Деление изделия на составные части и оформление чертежей и других технических документов в машиностроении дано в ГОСТ 2.101–68.

В современном машиностроении сборка расчленяется на общую

и узловую. Объектом общей сборки является изделие, объектом узловой сборки являются его составные части.

Служебное назначение изделия. Под служебным назначени-

ем машины понимают четко сформулированную конкретную задачу, для решения которой предназначена машина.

Формулировка служебного назначения машины должна содержать подробные сведения, конкретизирующие общую задачу и уточняющие условия, при которых эта задача может быть решена. Так, формулируя служебное назначение автомобиля, недостаточно сказать, что автомобиль предназначен для перевозки грузов. Необходимо конкретизировать характер грузов, их массу и объем, условия, расстояния и скорость перевозки, состояние дорог, климат, требования к внешнему виду автомобиля и многое другое с тем, чтобы исчерпывающе определить именно ту задачу, которую должен выполнять создаваемый автомобиль.

Служебное назначение машины описывают не только словесно, но и системой количественных показателей, определяющих ее конкретные функции, условия работы и ряд дополнительных моментов в соответствии с задачей, которую предстоит решать с помощью создаваемой машины. Формулировка служебного назначения машины является важнейшим документом в задании на ее проектирование.

Показатели качества изделия. Под качеством машины по-

нимают совокупность ее свойств, обусловливающих способность выполнять свое служебное назначение. К показателям качества машины можно отнести лишь то, что характеризует меру полезности машины, т.е. ее способность удовлетворять потребности людей в соответствии со своим назначением. Такими показателями являются качество продукции, производимой машиной, производительность машины, ее надежность, долговечность физическая и моральная, безопасность работы и удобство управления, уровень шума, коэффициент полезного действия, степень механизации и автоматизации, техническая эстетичность и т.п.

В проектирование машины, ее изготовление, эксплуатацию, техническое обслуживание и ремонты вкладывается конкретный труд. Создание машины, ее эксплуатация, обслуживание и ремонты сопряжены с использованием энергии, технических средств и материалов. Все вместе взятое образует стоимостное свойство машины – ее экономичность. Показателем Э экономичности машины может служить сумма затрат на проектирование Зпр , изготовление Зизг , эксплуатацию Зэ , техническое обслуживание Зт.о и ремонты Зрем , отнесенная к количеству N продукции, произведенной за период ее службы:

Э = З пр +З изг +З э +З т.о +З рем .

Между показателями качества и экономичности машины существуют связи, приводящие к влиянию одних на другие. Например, повышение качества машины по любым показателям сопряжено с увеличением ее стоимости. Но в то же время повышение уровня такого показателя качества, как надежность машины, сократит за-

траты труда на устранение отказов, техническое обслуживание и ремонты. Потребление машиной энергии, топлива, материалов при эксплуатации, в известной мере характеризующее экономичность машины, во многом зависит от качества ее изготовления и т.п.

Наличие связей между показателями качества и экономичности не означает свободу отнесения того или иного показателя к любой из категорий. Возможность такой свободы исключается принципиальным различием между показателями качества и экономичности. Первые из них отражают степень пригодности, полезности, наконец, те блага, которые извлекает человек, используя машину, вторые – цену этих благ, их стоимость.

Качество машины обеспечивается уровнем проектных решений, от которого зависит техническое совершенство конструкции машины, и технологией, определяющей качество деталей, сборки и отделки машины (рис. 1.1).

Экономичность машины находится в более сложной зависимости от технического совершенства конструкции машины и технологии ее изготовления. Например, стоимость машины зависит от качества, количества и стоимости материалов, выбранных конструктором в процессе проектирования. Однако конечные затраты на материалы, входящие в себестоимость, можно определить лишь после осуществления технологического процесса ее изготовления.

Уровень унификации и технологичности машины определяет конструктор. Но влияние этих факторов на себестоимость машины проявляется не прямым путем, а через технологию ее изготовления. Влияние этих же факторов скажется и на затратах по техническому обслуживанию и ремонту машины. Такие экономические показатели, как потребление машиной энергии, топлива и материалов в процессе эксплуатации, в первую очередь, зависят от качества конструкторских решений. Однако на значения этих показателей влияет качество реализации технологического процесса и т.д.

Таким образом, обеспечение качества и экономичности машины процессе ее создания является общей задачей конструктора и технолога. Ее успешное решение возможно при тесном сотрудничестве и взаимопонимании друг с другом.

Рис. 1.1. Совокупности свойств, определяющих качества и экономичность машины