Физико химические свойства меди. Book traversal links for Медь самородная формула свойства

Которая относиться к цветным металлам, известна с давних пор. Ее производство было изобретено раньше, чем люди начали изготавливать железо. По предположениям произошло в результате ее доступности и достаточно простого извлечения из содержащих медь соединений и сплавов. Итак, давайте рассмотрим сегодня свойства и состав меди, страны мира-лидеры по производству меди, изготовление изделий из нее и особенности этих сфер.

Медь обладает высоким коэффициентом электропроводимости, что послужило росту ее ценности, как электротехнического материала. Если ранее на электропровод тратилось до половины всей произведенной в мире меди, то сейчас с этими целями используется алюминий, как более доступный металл. А сама медь становиться наиболее дефицитным цветным металлом.

В этом видео рассмотрен химический состав меди:

Структура

Структурный состав меди включает в себя множество кристаллов: , золото, кальций, серебро, и многие другие. Все металлы, входящие в ее структуру, отличаются относительной мягкостью, пластичностью и простотой обработки. Большинство таких кристаллов в сочетании с медью образуют твердые растворы с непрерывными рядами.

Элементарная ячейка данного металла представляет собой кубическую форму. На каждую такую ячейку приходится по четыре атома, располагающихся на вершинах и центральной части грани.

Химический состав

Состав меди в процессе ее производства может включать в себя ряд примесей, которые влияют на структуру и характеристики конечного продукта. При этом их содержание должно регулироваться как по отдельным элементам, так и по их суммарному количеству. К примесям, которые встречаются в составе меди, можно отнести:

  • Висмут . Этот компонент негативно сказывается как на технологических, так и на механических свойствах металла. Именно поэтому он не должен превышать 0,001% от готового состава.
  • Кислород . Считается наиболее нежелательной примесью в составе меди. Его предельное содержание в сплаве составляет до 0,008% и стремительно сокращается в процессе воздействия высоких температур. Кислород негативно отражается на пластичности металла, а также на его устойчивости к коррозии.
  • Марганец . В случае изготовления проводниковой меди негативно отображается данный компонент на ее токопроводимости. Уже при комнатной температуре быстро растворяется в меди.
  • Мышьяк . Этот компонент создает твердый раствор с медью и практически не влияет на ее свойства. Его действие по большей мере направлено на нейтрализацию негативного воздействия от сурьмы, висмута и кислорода.
  • . Образует твердый раствор с медью и при этом снижает ее тепло- и электропроводность.
  • . Создает твердый раствор и способствует усилению теплопроводности.
  • Селен, сера . Эти два компонента имеют одинаковое воздействие на конечный продукт. Они организуют хрупкое соединение с медью и составляют не более 0,001%. При увеличении концентрации резко снижается степень пластичности меди.
  • Сурьма . Данный компонент хорошо растворяется в меди, поэтому оказывает минимальное воздействие на ее конечные свойства. Допускается ее не больше 0,05% от общего объема.
  • Фосфор . Служит главным раскислителем меди, предельная растворимость которого составляет 1,7% при температуре 714°С. Фосфор, в сочетании с медью, не только способствует ее лучшему свариванию, но и улучшает ее механические свойства.
  • . Содержится в небольшом количестве меди, практически не влияет на ее тепло- и электропроводность.

Производство меди

Медь производится из сульфидных руд, которые содержат эту медь в объеме минимум 0,5%. В природе существует около 40 минералов, содержащих данный металл. Наиболее распространенным сульфидным минералом, который активно используется в производстве меди, является халькопирит.

Для производства 1 т меди необходимо взять огромное количество сырья, которое ее содержит. Взять, к примеру, производство чугуна, для получения этого металла в объеме 1 тонны потребуется переработать около 2,5 т железной руды. А для получения такого же количества меди потребуется обработка до 200 т руды ее содержащей.

Видео ниже расскажет о добыче меди:

Технология и необходимое оборудование

Производство меди включает в себя ряд этапов:

  1. Измельчение руды в специальных дробилках и последующее более тщательное ее измельчение в мельницах шарового типа.
  2. Флотация. Предварительно измельченное сырье смешивается с малым количеством флотореагента и затем помещается во флотационную машину. В качестве такого добавочного компонента обычно выступает ксантогенат калия и извести, который в камере машины покрывается минералами меди. Роль извести на этом этапе крайне важна, поскольку она предупреждает обволакивание ксантогената частичками других минералов. К медным частичкам прилипают лишь пузырьки воздуха, которые выносят ее на поверхность. В результате этого процесса получается медный концентрат, который направляется удаление из его состава избыточной влаги.
  3. Обжиг. Руды и их концентраты проходят процесс обжига в моноподовых печах, что необходимо для выведения из них серы. В результате получается огарок и серосодержащие газы, которые в дальнейшем используют для получения серной кислоты.
  4. Плавка шихты в печи отражательного типа. На этом этапе можно брать сырую или уже обожженную шихту и подвергать ее обжигу при температуре 1500°С. Важным условием работы является поддержанием нейтральной атмосферы в печи. В итоге происходит сульфидирование меди и ее преобразование в штейн.
  5. Конвертирование. Полученная медь в сочетании с кварцевым флюсом продувается в специальном конвекторе на протяжении 15-24 ч. В итоге получается черновая медь в результате полного выгорания серы и выведения газов. В ее состав может входить до 3% различных примесей, которые благодаря электролизу выводятся наружу.
  6. Рафинирование огнем. Металл предварительно расплавляется и затем рафинируется в специальных печах. На выходе образуется красная медь.
  7. Электролитическое рафинирование. Этот этап проходит анодная и огневая медь для максимальной очистки.

Про заводы и центры производства меди в России и в мире читайте ниже.

Известные производители

На территории России действует всего четыре наибольших предприятия по добыче и производству меди:

  1. «Норильский никель»;
  2. «Уралэлектромедь»;
  3. Новгородский металлургический завод;
  4. Кыштымский медеэлектролитный завод.

Первые две компании входят в состав известнейшего холдинга «УГМК», который включает в себя около 40 промышленных предприятий. Он производит более 40% всей меди в нашей стране. Последние два завода принадлежат Русской медной компании.

Видеоролик ниже расскажет о производстве меди:

МЕДЬ и МЕДНЫЙ ПРОКАТ

Марки и химический состав технической меди

Марки меди и их химический состав определен в ГОСТ 859-2001 . Сокращенная информация о марках меди приведена ниже (указано минимальное содержание меди и предельное содержание только двух примесей – кислорода и фосфора):

Марка Медь О 2 P Способ получения, основные примеси
М00к 99.98 0.01 - Медные катоды: продукт электролитическогорафинирования, заключительная стадия переработки медной руды.
М0к 99.97 0.015 0.001
М1к 99.95 0.02 0.002
М2к 99.93 0.03 0.002
М00 99.99 0.001 0.0003 Переплавка катодов в вакууме, инертной или восстановительной атмосфере. Уменьшает содержание кислорода.
М0 99.97 0.001 0.002
М1 99.95 0.003 0.002
М00 99.96 0.03 0.0005 Переплавка катодов в обычной атмосфере. Повышенное содержание кислорода. Отсутствие фосфора
М0 99.93 0.04 -
М1 99.9 0.05 -
М2 99.7 0.07 - Переплавкалома . Повышенное содержание кислорода, фосфора нет
М3 99.5 0.08 -
М1ф 99.9 - 0.012 - 0.04 Переплавка катодов и лома меди с раскислением фосфором. Уменьшает содержание кислорода, но приводит к повышенному содержанию фосфора
М1р 99.9 0.01 0.002 - 0.01
М2р 99.7 0.01 0.005 - 0.06
М3р 99.5 0.01 0.005 - 0.06

Первая группа марок относится к катодной меди, остальные - отражают химический состав различных медных полуфабрикатов (медные слитки, катанка и изделия из неё, прокат).

Специфические особенности меди, присущие разным маркам, определяются несодержанием меди (различия составляют не более 0.5%), а содержанием конкретных примесей (их количество может различаться в 10 – 50 раз). Часто используют классификацию марок меди по содержанию кислорода:

Бескислородная медь (М00 , М0 и М1 ) с содержанием кислорода до 0.001%.

Рафинированная медь (М1ф, М1р, М2р, М3р) с содержанием кислорода до 0.01%, но с

повышенным содержанием фосфора.

Медь высокой чистоты (М00, М0, М1) с содержанием кислорода 0.03-0.05%.

Медь общего назначения (М2, М3) с содержанием кислорода до 0.08%.

Примерное соответствие марок меди, выпускаемой по разным стандартам, приведено ниже:

ГОСТ

EN , DIN

М00

Cu-OFE

М0 Cu-PHC , OF-Cu
М1

Cu-OF , Cu-OF1

М1

Cu-ETP, Cu-ETP1,Cu-FRTP, Cu-FRHC,

SE-Cu, E-Cu, E Cu57, E Cu58
М1 ф Cu-DHP , SF-Cu
М1р Cu-DLP , SW-Cu

Разные марки меди имеютразличное применение, а отличия в условиях их производства определяют существенные различия в цене.

Для производства кабельно-проводниковой продукции катоды переплавляют по технологии, которая исключает насыщение меди кислородом при изготовлении продукции. Поэтому медь в таких изделях соответствует маркамМ00, М0 , М1 .

Требованиям большинства технических задач удовлетворяют относительно дешевые марки М2 и М3. Это определяет массовое производство основных видов медного проката из М2 и М3.

Прокат из марок М1, М1ф, М1р, М2р, М3р производится в основном для конкретных потребителей и стоит намного дороже.

Физические свойства меди

Главное свойство меди, которое определяет её преимущественное использование – очень высокая электропроводность (или низкое удельное электросопротивление). Такие примеси как фосфор, железо, мышьяк, сурьма, олово, существенно ухудшают её электропроводность. На величину электропроводности существенное влияние оказывает способ получения полуфабриката и его механическое состояние. Это иллюстрируется приведенной ниже таблицей:

Удельное электрическое сопротивление меди для различных полуфабрикатов разных марок (гарантированные значения) при 20 о С.
мкОм*м марка Вид и состояние полуфабриката ГОСТ, ТУ

0.01707

М00

Слитки (непрерывное вертикальное литье)

193-79

М00

Катанка кл.А (кислород : 0.02-0.035%)

ТУ 1844 010 03292517

2004

0.01718

Катанка кл.В (кислород : 0.045%)

0.01724

Катанка кл.С (кислород : 0.05%)

193-79

Слитки (горизонтальное литье)

0.01748

Ленты

1173-2006

Прутки отожженные

1535-2006

0.01790

Прутки полутвердые, твердые, прессованные

Различия в сопротивлении катанки марок М00, М0 и М1, обусловлены разным количеством примесей и составляют около 1%. В то же время различия в сопротивлении, обусловленные разным механическим состоянием, достигают 2 – 3%. Удельное сопротивление изделий из меди маркиМ2 примерно 0.020 мкОм*м.

Второе важнейшее свойство меди - очень высокая теплопроводность.

Примеси и легирующие добавки уменьшают электро- и теплопроводность меди, поэтому сплавы на медной основе значительно уступают меди по этим показателям. Значения параметров основных физических свойств меди в сравнении с другими металлами приведены в таблице (данные приведены в двух разных системах единиц измерения):

Показатели

при

Единица

измерения

Медь

Алю-

миний

Латунь

Л63, ЛС

Бронза

БрАЖ

Сталь 12Х18Н10

Удельное

элетросопротивление,

мкОм * м

0.0172 –

0.0179

0.027-

0.030

0.065

0.123

0.725

Теплопроводность,

кал/см * с * град

0.93

0.52

0.25

0.14

0.035

Вт/м *град


386 - 390

По электро- и теплопроводности медь незначительно уступает только серебру.

Влияние примесей и особенности свойств меди различных марок

Отличия в свойствах меди разных марок связаны с влиянием примесей на базовые свойства меди. О влиянии примесей на физические свойства (тепло- и электропроводность) говорилось выше. Рассмотрим их влияние на другие группы свойств.

Влияние на механические свойства .

Железо, кислород, висмут, свинец, сурьма ухудшают пластичность. Примеси, малорастворимые в меди (свинец, висмут, кислород, сера), приводят к хрупкости при высоких температурах.

Температура рекристаллизации меди для разных марок составляет 150-240 о С. Чем больше примесей, тем выше эта температура. Существенное увеличение температуры рекристаллизации меди дает серебро, цирконий. Например введение 0.05% Ag увеличивает температуру рекристаллизации вдвое, что проявляется в увеличении температуры размягчения и уменьшении ползучести при высоких температурах, причем без потери тепло- и электропроводности.

Влияние на технологические свойства .

К технологическим свойствам относятся 1) способность к обработке давлением при низких и высоких температурах, 2) паяемость и свариваемость изделий.

Примеси, особенно легкоплавкие,формируют зоны хрупкости при высоких температурах, что затрудняет горячую обработку давлением. Однако уровень примесей в марках М1 и М2 обеспечивают необходимую технологическую пластичность.

При холодном деформировании влияние примесей заметно проявляется при производстве проволоки. При одинаковом пределе прочности на разрыв (? в = 16 кгс /мм 2 ) катанки из марок М00, М0 и М1 имеют разное относительное удлинение ? (38%, 35% и 30% соответственно). Поэтому катанка класса А (ей соответствует марка М00) более технологична при производстве проволоки, особенно малых диаметров. Использование бескислородной меди для производства проводников тока обусловлено не столько величиной электропроводности, сколько технологическим фактором.

Процессы сварки и пайки существенно затрудняются при увеличении содержания кислорода, а также свинца и висмута.

Влияние кислорода и водорода на эксплуатационные свойства .

При обычных условиях эксплуатационныесвойства меди (прежде всего долговечность эксплуатации) практически одинаковы для разных марок. В то же время при высоких температурахможет проявиться вредное влияние кислорода, содержащегося в меди. Эта возможность обычно реализуется при нагреве меди в среде, содержащей водород.

Кислород изначально содержится в меди марокМ0, М1, М2, М3. Кроме этого, если бескислородную медь отжечь на воздухе при высоких температурах, то вследствие диффузии кислорода поверхностный слой изделия станет кислородсодержащим.Кислород в меди присутствует в виде закиси меди ,которая локализуется по границам зерен.

Кроме кислорода в меди может присутствовать водород. Водород попадает в медь в процессе электролиза или при отжиге в атмосфере, содержащей водяной пар. Водяной пар всегда присутствует в воздухе. При высокой температуре он разлагается с образованием водорода, который легко диффундирует в медь.

В бескислородной меди атомы водорода располагаются в междоузлиях кристаллической решетки и особо не сказываются на свойствах металла.

В кислородсодержащей меди при высоких температурах водородвзаимодействует с закисью меди. При этом в толще меди образуется водяной пар высокого давления, что приводит к вздутиям, разрывам и трещинам. Это явление известно как «водородная болезнь» или «водородное охрупчивание». Оно проявляется при эксплуатации медного изделия при температурах свыше 200 о С в атмосфере, содержащей водород или водяной пар.

Степень охрупчивания тем сильнее, чем больше содержание кислорода в меди и выше температура эксплуатации. При 200 о С срок службы составляет1.5 года, при 400 о С - 70 часов.

Особенно сильно оно проявляется в изделиях малой толщины (трубки, ленты).

При нагреве в вакууме изначально содержащийся в меди водород взаимодействует с закисью меди и также ведет к охрупчиванию изделия и ухудшению вакуума. Поэтому изделия, которые эксплуатируются при высокой температуре, производятся из бескислородных (рафинированных) марок меди М1р, М2р, М3р.

Механические свойства медного проката

Большая часть медного проката, поступающего в свободную продажу, производится из марки М2. Прокат из марки М1 производится в основном под заказ, кроме того он примерно на 20% дороже.

Холоднодеформированный прокат – это тянутые (прутки, проволока, трубы) и холоднокатаные (листы, лента, фольга) изделия. Он выпускается в твердом, полутвердом и мягком (отожженном) состояниях. Такой прокат маркируется буквой «Д», а состояния поставки буквами Т, П или М.

Горячедеформированный прокат – результат прессования (прутки, трубы) или горячей прокатки (листы, плиты) при температурах выше температуры рекристаллизации. Такой прокат маркируется буквой «Г». По механическим свойствам горячедеформированный прокат близок (но не идентичен) к холоднодеформированному прокату в мягком состоянии.

Параметры при комнатной темп.

Модуль упругости E , кгс /мм 2

11000

13000

Модуль сдвига G , кгс /мм 2

4000

4900

Предел текучести ? 0.2 , кгс /мм 2

5 - 10

25 - 34

Предел прочности ? в , кгс /мм 2

19 – 27

31 – 42

Относ. удлинение ?

40 – 52

2 - 11

Твердость НВ

40 - 45

70 - 110

Сопротивление срезу, кгс /мм 2

10 - 15

18 - 21

Ударная вязкость,

16 - 18

Обрабатываем. резанием, % к Л63-3

Предел усталости ? -1 при 100 млн циклов

Высокий предел прочности на сжатие (55 - 65 кгс/мм 2 ) в сочетании с высокой пластичностью определяет широкое использование медив качестве прокладок в уплотнениях неподвижных соединений с температурой эксплуатации до 250 о С (давление 35Кгс\см 2 для пара и 100 Кгс\см 2 для воды).

Медь широко используется в технике низких температур, вплоть до гелиевых. При низких температурах она сохраняет показатели прочности, пластичности и вязкости, характерные для комнатной температуры. Наиболее часто используемое свойство меди в криогенной технике – её высокая теплопроводность. При криогенных температурах теплопроводность марок М1 и М2становится существенной, поэтому в криогенной технике применение марки М1 становится принципиальным.

Медные прутки выпускаются прессованными (20 – 180 мм) и холоднодеформированными, в твердом, полутвердом и мягком состояниях (диаметр 3 - 50 мм)по ГОСТ 1535-2006.

Плоский медный прокат общего назначения выпускается в виде фольги, ленты, листов и плит по ГОСТ 1173-2006:

Фольга медная – холоднокатаная: 0.05 – 0.1 мм (выпускается только в твердом состоянии)

Ленты медные - холоднокатаные: 0.1 – 6 мм.

Листы медные - холоднокатаные: 0.2 – 12 мм

Горячекатаные:3 – 25 мм (механич. свойства регламентируются до 12 мм)

Плиты медные – горячекатаные:свыше 25 мм (механические свойства не регламентируются)

Горячекатаные и мягкие холоднокатаные медные листы и ленты выдерживают испытание на изгиб вокруг оправки диаметром равным толщине листа. При толщине до 5 мм они выдерживают изгиб до соприкосновения сторон, а при толщине 6 – 12 мм - до параллельности сторон. Холоднокатанные полутвердые листы и ленты выдерживают испытание на изгиб на 90 град.

Таким образом допустимый радиус изгиба медных листов и лент равен толщине листа (ленты).

Глубина выдавливания лент и листов пуансоном радиусом 10 мм составляет не менее 7 мм для листов толщиной 0.1-0.14 мм и не менее 10 мм для листов толщиной 1-1.5 мм. По этому показателю (выдавливаемость) медь уступает латуням Л63 и Л68.

Медные трубы общего назначения изготавливаются холоднодеформированными (в мягком, полутвердом и твердом состояниях) и прессованными (больших сечений) по ГОСТ 617-2006.

Медные трубы используются не толькодля технологических жидкостей, но и для питьевой воды. Медь инертна по отношению к хлору и озону, которые используются для очистки воды, ингибирует рост бактерий, при замерзании воды медные трубы деформируются без разрыва. Медные трубы для воды производятся по ГОСТ Р 52318-2005 , для них ограничено содержание органических веществ на внутренней поверхности. Минимальные радиусы изгиба и допустимые давления для мягких медных труб приведены ниже:

Размер трубы, мм

Допустимое

давление, бар

Радиус изгиба, мм

Размер трубы

Допустимое

давление, бар

Дюймы (мм)

1/4” (6.35*0.8)

10*1

3/8” (9.52*0.8)

12*1

1/2” (12.7*0.8)

14*1

90 52

16*1

60

5/8” (15, 87*1)

18*1

3/4” (19,05*1)

20*1

60 75

22*1

80

7/8” (22.22*1)

Коррозионные свойства меди .

При нормальных температурах медь устойчива в следующих средах:

Сухой воздух

Пресная вода (аммиак, сероводород, хлориды, кислоты ускоряют коррозию)

В морской воде при небольших скоростях движения воды

В неокислительных кислотах и растворах солей (в отсутствии кислорода)

Щелочные растворы (кроме аммиака и солей аммония)

Сухие газы-галогены

Органические кислоты, спирты, фенольные смолы

Медь неустойчива в следующих средах:

Аммиак, хлористый аммоний

Окислительные минеральные кислоты и растворы кислых солей

Коррозионные свойства меди в некоторых средах заметно ухудшаются с увеличением количества примесей.

Контактная коррозия .

Допускается контакт меди с медными сплавами, свинцом, оловом во влажной атмосфере, пресной и морской воде. В то же время не допускается контакт с алюминием, цинком вследствие их быстрого разрушения.

Свариваемость меди

Высокая тепло- и электропроводность меди затрудняют её электросварку (точечную и роликовую). Особенно это касается массивных изделий. Тонкие детали можно сварить вольфрамовыми электродами. Детали толщиной более 2-х мм можно сваривать нейтральным ацетилено-кислородным пламенем. Надежный способ соединения медных изделий – пайка мягкими и твердыми припоями. Подробно о сварке меди см www.weldingsite.com.ua

Медные сплавы

Техническая медь имеет низкую прочность и износоустойчивость, плохие литейные и антифрикционные свойства. Этих недостатков лишены сплавы на медной основе - латуни и бронзы . Правда эти улучшения достигаются за счет ухудшения тепло- и электропроводности.

Имеются особые случаи, когда нужно сохранить высокую электро- или теплопроводность меди, но придать ей жаропрочность или износоустойчивость.

При нагревании меди выше температурырекристаллизации происходит резкое снижение предела текучести и твердости. Это затрудняет использование меди в электродах для контакной сварки. Поэтому, для этой цели используют специальные медные сплавы с хромом, цирконием, никелем, кадмием (БрХ, БрХЦр, БрКН, БрКд). Электродные сплавы сохраняютотносительно высокую твердость и удовлетворительную электро- и теплопроводностьпри температурах сварочного процесса (порядка 600С ).

Жаропрочностьдостигается также легированием серебром. Такие сплавы (МС) имеют меньшую ползучесть при неизменной электро- и теплопроводности.

Для использования в подвижных контактах (коллекторные пластины, контактный провод) применяют медь с небольшим уровнем легирования магнием или кадмием БрКд, БрМг. Они имеют повышенную износоустойчивость при высокой электропроводности.

Для кристаллизаторов используют медь с добавками железа или олова. Такие сплавы имеют высокую теплопроводность при повышенной износоустойчивости.

Низколегированные марки меди по сути являются бронзами, но часто их относят к группе медного проката с соответствующей маркировкой (МС, МК, МЖ) .


В периодической системе элементов Д.И.Менделеева медь расположена в I группе 4-го периода, её порядковый номер 29. Атомная масса 63,54. Как элемент первой группы медь одновалентна. В этом состоянии она широко представлена в рудных минералах, штейнах, шлаках и других продуктах пирометаллургии. В продуктах их окисления в природе и в технологических процессах более устойчивым является двухвалентное состояние.

Температура плавления меди 1083 0 С. Температура кипения – 2325 0 С.

Медь – мягкий, вязкий и ковкий металл красного цвета, легко поддается механической обработке. Легко прокатывается в тонкие листы и вытягивается в проволоку.

Важнейшее свойство - электропроводность (уступает только серебру). Примеси снижают электропроводность, поэтому в электротехнике применяют медь высокой степени чистоты.

Также медь отличается высокой теплопроводностью.

В химическом отношении медь малоактивна, хотя может непосредственно соединяться с кислородом, серой, галогенами и некоторыми другими элементами.

При обычной температуре и сухом воздухе медь остается инертной, но во влажном воздухе, содержащем СО 2 , медь окисляется и покрывается защитной пленкой основного карбоната СuCO 3 ·Cu(OH) 2 , являющегося ядовитым веществом.

В растворах соляной и серной кислот в отсутствии окислителя медь не растворяется. В кислотах, одновременно являющихся окислителями (азотная или горячая концентрированная серная), медь растворяется легко.

При высоких температурах в пирометаллургических процессах устойчивыми соединениями меди являются Cu 2 O и Cu 2 S.

Медь и её сульфид Cu 2 S являются хорошими коллекторами (растворителями) золота и серебра, что делает возможным их высокое попутное извлечение при производстве меди.

Важное свойство меди – образовывать сплавы с другими металлами. Это бронзы (Cu + Sn), латуни (Cu + Zn) медно-никелевые сплавы.

В современных бронзах в качестве присадок используют алюминий, кремний, бериллий, свинец. Применяются эти бронзы для изготовления ответственных деталей и литых изделий.

Например, бериллиевые бронзы (2% Ве) по механическим свойствам превосходят многие сорта стали и имеют хорошую электропроводность. Алюминиевые бронзы (5-10% Al) очень прочны и идут на изготовление авиационных двигателей.

В специальные латуни, кроме цинка, добавляют алюминий, железо, кремний, никель. Латуни идут на изготовление радиаторов, труб, гибких шлангов, патронных гильз, художественных изделий.

Из медно-никелевых сплавов наиболее известны мельхиор (применяется в кораблестроении, т.к. устойчив к воздействию морской воды) и нейзильбер – стоек в растворах солей и органических кислот (изготавливают медицинские инструменты).

Около 50% всей меди использует электропромышленность. Также медь используется в машиностроении, ракетной технике, при производстве строительных материалов, в транспорте, химической промышленности, сельском хозяйстве.

1.3 Сырье для получения меди

Кларк меди, т.е. её содержание в земной коре, равен 0,01%. Однако она образует многочисленные месторождения. Характерным для меди является наличие в природе всех 4-х типов руд. Однако основным медным сырьем являются сульфидные руды. Из сульфидных руд в настоящее время выплавляют 85-90% всей первичной меди.

В России медные руды добывают на Урале – Кировград, Красноуральск, Медногорск, Гай и др., в Заполярье – на Кольском полуострове и на Таймыре.

Источниками получения меди являются руды, продукты их обогащения - концентраты - и вторичное сырье. На долю вторичного сырья в настоящее время приходится около 40 % от общего выпуска меди.

Медные руды практически полностью относятся к полиметаллическим. Монометаллических руд меди в природе нет. Ценными спутниками меди в рудном сырье являются около 30 элементов. Важнейшие из них: цинк, свинец, никель, кобальт, золото, серебро, металлы платиновой группы, сера, селен, теллур, кадмий, германий, рений, индий, таллий, молибден, железо.

Известно более 250 медных минералов. Большинство из них встречаются редко. Наибольшее промышленное значение имеет небольшая группа минералов, состав которых приведен в таблице 2.

Таблица 2 – Промышленные медные минералы

химическая

Сульфидные минералы

халькопирит

ковеллин

халькозин

Окисленные минералы

CuCO 3 ·Cu(OH) 2

CuCO 3 · 2Cu(OH) 2

хризоколла

CuSiO 3 ·2H 2 O

самородная медь

Cu, Ag, Au, Fe, Bi и др.

Бóльшая часть медных руд добывается в настоящее время открытым способом. В России на долю подземной добычи приходится около 30%.

В современной практике обычно разрабатывают руды с содержанием 0,8-1,5% меди, иногда выше. Но для крупных месторождений вкрапленных руд минимальное содержание меди, пригодное для разработки, составляет 0,4-0,5%. Если в породе содержится меньше указанного количества меди, её переработка нерентабельна.

Ценность медных руд значительно повышается из-за наличия в них благородных металлов и ряда редких – селена, теллура, рения, висмута и др.

Вследствие низкого содержания меди в руде и комплексного характера руд сырье предварительно подвергают флотационному обогащению. При обогащении медных руд основным продуктом являются медные концентраты, содержащие до 55% Cu (чаще 10-30%). Также получают пиритные концентраты и концентраты других цветных металлов, например цинковый. Флотационные концентраты представляют собой тонкие порошки с частицами крупностью 74 мкм и влажностью 8-10%.

Медные руды и концентраты имеют одинаковый минералогический состав и отличаются лишь количественным соотношениями между различными минералами. Физико-химические основы их металлургической переработки совершенно одинаковы.

§1. Химические свойства простого вещества (ст. ок. = 0).

а) Отношение к кислороду .

В отличие от своих соседей по подгруппе – серебра и золота, - медь непосредственно реагирует с кислородом. Медь проявляет к кислороду незначительную активность, но во влажном воздухе постепенно окисляется и покрывается пленкой зеленоватого цвета, состоящей из основных карбонатов меди:

В сухом воздухе окисление идет очень медленно, на поверхности меди образуется тончайший слой оксида меди:

Внешне медь при этом не меняется, так как оксид меди (I) как и сама медь, розового цвета. К тому же слой оксида настолько тонок, что пропускает свет, т.е. просвечивает. По-иному медь окисляется при нагревании, например, при 600-800 0 C. В первые секунды окисление идет до оксида меди (I), которая с поверхности переходит в оксид меди (II) черного цвета. Образуется двухслойное окисное покрытие.

Q образования (Cu 2 O) = 84935 кДж.

Рисунок 2. Строение оксидной пленки меди.

б) Взаимодействие с водой .

Металлы подгруппы меди стоят в конце электрохимического ряда напряжений, после иона водорода. Следовательно, эти металлы не могут вытеснять водород из воды. В то же время водород и другие металлы могут вытеснять металлы подгруппы меди из растворов их солей, например:

Эта реакция окислительно-восстановительная, так как происходит переход электронов:

Молекулярный водород вытесняет металлы подгруппы меди с большим трудом. Объясняется это тем, что связь между атомами водорода прочная и на ее разрыв затрачивается много энергии. Реакция же идет только с атомами водорода.

Медь при отсутствии кислорода с водой практически не взаимодействует. В присутствии кислорода медь медленно взаимодействует с водой и покрывается зеленой пленкой гидроксида меди и основного карбоната:

в) Взаимодействие с кислотами .

Находясь в ряду напряжений после водорода, медь не вытесняет его из кислот. Поэтому соляная и разбавленная серная кислота на медь не действуют.

Однако в присутствии кислорода медь растворяется в этих кислотах с образованием соответствующих солей:

Исключение составляет только иодоводородная кислота, которая вступает в реакцию с медью с выделением водорода и образованием очень устойчивого комплекса меди (I):

2 Cu + 3 HI → 2 H [ CuI 2 ] + H 2

Медь так же реагирует с кислотами – окислителями, например, с азотной:

Cu + 4HNO 3( конц .) → Cu(NO 3 ) 2 +2NO 2 +2H 2 O

3Cu + 8HNO 3( разбав .) → 3Cu(NO 3 ) 2 +2NO+4H 2 O

А так же с концентрированной холодной серной кислотой:

Cu + H 2 SO 4(конц.) → CuO + SO 2 + H 2 O

C горячей концентрированной серной кислотой:

Cu + 2H 2 SO 4( конц ., горячая ) → CuSO 4 + SO 2 + 2H 2 O

C безводной серной кислотой при температуре 200 0 С образуется сульфат меди (I):

2Cu + 2H 2 SO 4( безводн .) 200 °C → Cu 2 SO 4 ↓ + SO 2 + 2H 2 O

г) Отношение к галогенам и некоторым другим неметаллам .

Q образования (CuCl) = 134300 кДж

Q образования (CuCl 2) = 111700 кДж

Медь хорошо реагирует с галогенами, дает два вида галогенидов: CuX и CuX 2 .. При действии галогенов при комнатной температуре видимых изменений не происходит, но на поверхности вначале образуется слой адсорбированных молекул, а затем и тончайший слой галогенидов. При нагревании реакция с медью происходит очень бурно. Нагреем медную проволочку или фольги и опустим ее в горячем виде в банку с хлором – около меди появятся бурые пары, состоящие из хлорида меди (II) CuCl 2 с примесью хлорида меди (I) CuCl. Реакция происходит самопроизвольно за счет выделяющейся теплоты. Одновалентные галогениды меди получают при взаимодействии металлической меди с раствором галогенида двухвалентной меди, например:

При этом монохлорид выпадает из раствора в виде белого осадка на поверхности меди.

Медь так же достаточно легко ступает в реакции с серой и селеном при нагревании (300-400 °C):

2Cu +S→Cu 2 S

2Cu +Se→Cu 2 Se

А вот с водородом, углеродом и азотом медь не реагирует даже при высоких температурах.

д) Взаимодействие с оксидами неметаллов

Медь при нагревании может вытеснять из некоторых оксидов неметаллов (например, оксид серы (IV) и оксиды азота (II, IV)) простые вещества, образуя при этом термодинамически более устойчивый оксид меди (II):

4Cu+SO 2 600-800°C →2CuO + Cu 2 S

4Cu+2NO 2 500-600°C →4CuO + N 2

2 Cu +2 NO 500-600° C →2 CuO + N 2

§2. Химические свойства одновалентной меди (ст.ок. = +1)

В водных растворах ион Cu + очень неустойчив и диспропорционирует:

Cu + Cu 0 + Cu 2+

Однако медь в степени окисления (+1) может стабилизироваться в соединениях с очень низкой растворимостью или за счет комплексообразовния .

а) Оксид меди (I ) Cu 2 O

Амфотерный оксид. Кристаллическое вещество коричнево-красного цвета. В природе встречается в виде минерала куприта. Исскуственно может быть получен нагреванием раствора соли меди (II) с щелочью и каким-нибудь сильным восстановителем, например, формалином или глюкозой . Оксид меди(I) не реагирует с водой. Оксид меди(I) переводится в раствор концентрированной соляной кислотой с образованием хлоридного комплекса:

Cu 2 O +4 HCl →2 H [ CuCl 2]+ H 2 O

Так же растворим в концентрированном растворе аммиака и солей аммония:

Cu 2 O+2NH 4 + →2 +

В разбавленной серной кислоте диспропорционирует на двухвалентную медь и металлическую медь:

Cu 2 O+H 2 SO 4(разбав.) →CuSO 4 +Cu 0 ↓+H 2 O

Также оксид меди(I) вступает в водных растворах в следующие реакции:

1. Медленно окисляется кислородом до гидроксида меди(II):

2 Cu 2 O +4 H 2 O + O 2 →4 Cu (OH ) 2

2. Реагирует с разбавленными галогенводородными кислотами с образованием соответствующих галогенидов меди(I):

Cu 2 O +2 H Г→2 Cu Г↓ + H 2 O (Г= Cl , Br , J )

3.Восстанавливается до металлической меди типичными восстановителями, например, гидросульфитом натрия в концентрированном растворе:

2 Cu 2 O +2 NaSO 3 →4 Cu ↓+ Na 2 SO 4 + H 2 SO 4

Оксид меди(I) восстанавливается до металлической меди в следующих реакциях:

1. При нагревании до 1800 °C (разложение):

2 Cu 2 O - 1800 ° C →2 Cu + O 2

2. При нагревании в токе водорода, монооксида углерода, с алюминиеми прочими типичными восстановителями:

Cu 2 O + H 2 - >250°C →2Cu +H 2 O

Cu 2 O + CO - 250-300°C →2Cu +CO 2

3 Cu 2 O + 2 Al - 1000° C →6 Cu + Al 2 O 3

Также, при высоких температурах оксид меди(I) реагирует:

1. C аммиаком (образуется нитрид меди(I))

3 Cu 2 O + 2 NH 3 - 250° C →2 Cu 3 N + 3 H 2 O

2. С оксидами щелочных металлов:

Cu 2 O+M 2 O- 600-800°C →2 М CuO (M= Li, Na, K)

При этом образуются купраты меди (I).

Оксид меди (I) заметно реагирует с щелочами :

Cu 2 O +2 NaOH (конц.) + H 2 O ↔2 Na [ Cu (OH ) 2 ]

б) Гидроксид меди (I ) CuOH

Гидроксид меди(I) образует жёлтое вещество, не растворяется в воде.

Легко разлагается при нагревании или кипячении:

2 CuOH Cu 2 O + H 2 O

в) Галогениды CuF , Cu С l , CuBr и CuJ

Все эти соединения – белые кристаллические вещества, плохо растворимые в воде, но хорошо растворимые в избытке NH 3 , цианидных ионов, тиосульфатных ионов и иных сильных комплексообразователей. Иод образует только соединение Cu +1 J. В газообразном состоянии образуются циклы типа (CuГ) 3 . Обратимо растворимы в соответствующих галогенводородных кислотах:

Cu Г + HГ ↔ H [ Cu Г 2 ] (Г= Cl , Br , J )

Хлорид и бромид меди (I) неустойчивы во влажном воздухе и постепенно превращаются в основные соли меди (II):

4 Cu Г +2 H 2 O + O 2 →4 Cu (OH )Г (Г=Cl, Br)

г) Прочие соединения меди (I )

1. Ацетат меди (I) (СН 3 СООСu) - соединение меди, имеет вид бесцветных кристаллов. В воде медленно гидролизуется до Сu 2 О, на воздухе окисляется до ацетата двухвалентной меди; Получают СН 3 СООСu восстановлением (СН 3 СОО) 2 Сu водородом или медью, сублимацией (СН 3 СОО) 2 Сu в вакууме или взаимодействием (NH 3 OH)SO 4 с (СН 3 СОО) 2 Сu в р-ре в присутствии Н 3 СООNH 3 . Вещество токсично.

2. Ацетиленид меди(I) - красно-коричневые, иногда черные кристаллы. В сухом виде кристаллы детонируют при ударе или нагреве. Устойчивы во влажном состоянии. При детонации в отсутствие кислорода не образуется газообразных веществ. Под действием кислот разлагается. Образуется в виде осадка при пропускании ацетилена в аммиачные растворы солей меди(I):

С 2 H 2 +2[ Cu (NH 3 ) 2 ](OH ) → Cu 2 C 2 ↓ +2 H 2 O +2 NH 3

Данная реакция используется для качественного обнаружения ацетилена.

3. Нитрид меди - неорганическое соединение с формулой Cu 3 N, тёмно-зелёные кристаллы.

Разлагается при нагревании:

2 Cu 3 N - 300° C →6 Cu + N 2

Бурно реагирует с кислотами:

2 Cu 3 N +6 HCl - 300° C →3 Cu ↓ +3 CuCl 2 +2 NH 3

§3. Химические свойства двухвалентной меди (ст.ок. = +2)

Наиболее устойчивая степень окисления у меди и самая характерная для нее.

а) Оксид меди (II ) CuO

CuO - основный оксид двухвалентной меди. Кристаллы чёрного цвета, в обычных условиях довольно устойчивые, практически нерастворимые в воде. В природе встречается в виде минерала тенорита (мелаконита) чёрного цвета. Оксид меди(II) реагирует с кислотами с образованием соответствующих солей меди(II) и воды:

CuO + 2 HNO 3 Cu (NO 3 ) 2 + H 2 O

При сплавлении CuO со щелочами образуются купраты меди (II):

CuO +2 KOH - t ° K 2 CuO 2 + H 2 O

При нагревании до 1100 °C разлагается :

4CuO- t ° →2 Cu 2 O + O 2

б) Гидроксид меди (II) Cu (OH ) 2

Гидроксид меди(II) - голубое аморфное или кристаллическое вещество, практически не растворимое в воде. При нагревании до 70-90 °C порошка Cu(ОН) 2 или его водных суспензий разлагается до CuО и Н 2 О:

Cu (OH ) 2 CuO + H 2 O

Является амфотерным гидроксидом. Реагирует с кислотами с образованием воды и соответствующей соли меди:

С разбавленными растворами щелочей не реагирует, в концентрированных растворяется, образуя ярко-синие тетрагидроксокупраты (II):

Гидроксид меди(II) со слабыми кислотами образует основные соли . Очень легко растворяется в избытке аммиака с образованием аммиаката меди:

Cu(OH) 2 +4NH 4 OH→(OH) 2 +4H 2 O

Аммиакат меди имеет интенсивный сине-фиолетовый цвет, поэтому его используют в аналитической химии для определения малых количеств ионов Cu 2+ в растворе.

в) Соли меди (II )

Простые соли меди (II) известны для большинства анионов, кроме цианида и иодида, которые при взаимодействии с катионом Cu 2+ образуют ковалентные соединения меди (I), нерастворимые в воде.

Соли меди (+2), в основном, растворимы в воде. Голубой цвет их растворов связан с образованием иона 2+ . Они часто кристаллизуются в виде гидратов. Так, из водного раствора хлорида меди (II) ниже 15 0 С кристаллизуется тетрагидрат, при 15-26 0 С – тригидрат, свыше 26 0 С – дигидрат. В водных растворах соли меди (II) в небольшой степени подвержены гидролизу, и из них часто осаждаются основные соли .

1. Пентагидрат сульфата меди (II) (медный купорос)

Наибольшее практическое значение имеет CuSO 4 *5H 2 O, называемый медным купоросом. Сухая соль имеет голубую окраску, однако при несильном нагревании (200 0 С) она теряет кристаллизационную воду. Безводная соль белого цвета. При дальнейшем нагревании до 700 0 С она превращается в оксид меди, теряя триоксид серы:

CuSO 4 ­-- t ° CuO + SO 3

Готовят медный купорос растворением меди в концентрированной серной кислоте. Эта реакция описана в разделе «Химические свойства простого вещества». Медный купорос применяют при электролитическом получении меди, в сельском хозяйстве для борьбы с вредителями и болезнями растений, для получения других соединений меди .

2. Дигидрат хлорида меди (II).

Это темно-зеленые кристаллы, легкорастворимые в воде. Концентрированные растворы хлорида меди имеют зеленый цвет, а разбавленные – голубой. Это объясняется образованием хлоридного комплекса зеленого цвета:

Cu 2+ +4 Cl - →[ CuCl 4 ] 2-

И его дальнейшим разрушением и образованием голубого аквакомплекса.

3. Тригидрат нитрата меди (II).

Кристаллическое вещество синего цвета. Получается при растворении меди в азотной кислоте. При нагревании кристаллы сначала теряют воду, затем разлагаются с выделением кислорода и диоксида азота, переходя в оксид меди (II):

2Cu(NO 3 ) 2 -- →2CuO+4NO 2 +O 2

4. Карбонат гидроксомеди (II).

Карбонаты меди малоустойчивы и в практике почти не применяются. Некоторое значение для получения меди имеет лишь основной карбонат меди Cu 2 (OH) 2 CO 3 , который встречается в природе в виде минерала малахита. При нагревании легко разлагается с выделением воды, оксида углерода (IV) и оксида меди (II):

Cu 2 (OH) 2 CO 3 -- →2CuO+H 2 O+CO 2

§4. Химические свойства трехвалентной меди (ст.ок. = +3)

Эта степень окисления является наименее стабильной для меди, и поэтому соединения меди (III) являются скорее исключениями, чем «правилами». Тем не менее, некоторые соединения трехвалентной меди существуют.

а) Оксид меди (III) Cu 2 O 3

Это кристаллическое вещество, темно-гранатового цвета. Не растворяется в воде.

Получается окислением гидроксида меди(II) пероксодисульфатом калия в щелочной среде при отрицательных температурах:

2Cu(OH) 2 +K 2 S 2 O 8 +2KOH -- -20°C →Cu 2 O 3 ↓+2K 2 SO 4 +3H 2 O

Это вещество разлагается при температуре 400 0 С:

Cu 2 O 3 -- t ° →2 CuO + O 2

Окисид меди (III) – сильный окислитель. При взаимодействии с хлороводородом хлор восстанавливается до свободного хлора :

Cu 2 O 3 +6 HCl -- t ° →2 CuCl 2 + Cl 2 +3 H 2 O

б) Купраты меди (Ш)

Это черные или синие вещества, в воде не устойчивы, диамагнитны, анион – ленты квадратов (dsp 2). Образуются при взаимодействии гидроксида меди(II) и гипохлорита щелочного металла в щелочной среде :

2 Cu (OH ) 2 + М ClO + 2 NaOH →2М CuO 3 + NaCl +3 H 2 O (M = Na - Cs )

в) Калия гексафторкупрат(III)

Зеленое вещество, парамагнитно. Октаэдрическое строение sp 3 d 2 . Комплекс фторида меди CuF 3 , который в свободном состоянии разлагается при -60 0 С. Образуется нагреванием смеси хлоридов калия и меди в атмосфере фтора:

3KCl + CuCl + 3F 2 → K 3 + 2Cl 2

Разлагает воду с образованием свободного фтора.

§5. Соединения меди в степени окисления (+4)

Пока науке известно лишь одно вещество, где медь в степени окисления +4, это гексафторкупрат(IV) цезия – Cs 2 Cu +4 F 6 - оранжевое кристаллическое вещество, стабильное в стеклянных ампулах при 0 0 С. Бурно реагирует с водой. Получается фторированием при высоком давлении и температуре смеси хлоридов цезия и меди :

CuCl 2 +2CsCl +3F 2 -- t ° р → Cs 2 CuF 6 +2Cl 2