Излучение и спектры шкала электромагнитных волн презентация. Шкала электромагнитных излучений

Слайд 2

Шкала электромагнитных волн Скорость света Спектр электромагнитных волн Радиоволны Виды радиоволн Виды радиоволн (продолжение) Инфракрасное излучение Световое излучение Рентгеновское излучение Гамма-излучение Вывод

Слайд 3

Вся информация от звезд, туманностей, галактик и других астрономических объектов поступает в виде электромагнитного излучения. Шкала электромагнитного излучения. По горизонтальной оси отложены: внизу – длина волны в метрах, вверху – частота колебаний в герцах

Слайд 4

Шкала электромагнитных волн

Шкала электромагнитных волн простирается от длинных радиоволн до гамма – лучей. Электромагнитные волны различной длины условно делят на диапазоны по различным признакам (способу получения, способу регистрации, характеру взаимодействия с веществом).

Слайд 5

Скорость света

Всякое излучение можно рассматривать как поток квантов – фотонов, распространяющихся со скоростью света, равной c = 299 792 458 м/с. Скорость света связана с длиной и частотой волны соотношением c = λ ∙ ν

Слайд 6

Спектр электромагнитных волн

Спектр электромагнитного излучения в порядке увеличения частоты составляют: 1) Радиоволны 2) Инфракрасное излучение 3) Световое излучение 4) Рентгеновское излучение 5) Гамма -излучение Спектром электромагнитных волн называется полоса частот электромагнитных волн, существующих в природе.

Слайд 7

Радиоволны

Радиоволны представляют собой электромагнитные волны, длины которых превосходят 0.1мм

Слайд 8

Виды радиоволн

1. Сверхдлинные волны с длиной волны больше 10км 2. Длинные волны в интервале длин от10км до 1км 3. Средние волны в интервале длин от1км до 100м

Слайд 9

Виды радиоволн (продолжение)

4. Короткие волны в интервале длин волн от 100м до 10м 5. Ультракороткие волны с длиной волны меньше 10м

Слайд 10

Инфракрасное излучение

Инфракрасное излучение – это электромагнитные волны, которые испускает любое нагретое тело, даже если оно не светится. Инфракрасные волны также тепловые волны, т.к. многие источники этих волн вызывают заметное нагревание окружающих тел.

Слайд 11

Световое излучение

Световое излучение - поток лучистой энергии из инфракрасной, видимой и ультрафиолетовой области спектра, действует в течение нескольких секунд, источником является светящаяся область взрыва.

Слайд 12

Рентгеновское излучение

Рентгеновское излучение возникает при торможении быстрых заряженных частиц (электронов, протонов и пр.), а также в результате процессов, происходящих внутри электронных оболочек атомов. Применение: медицина, физика, химия, биология, техника, криминалистика, искусствоведение

Слайд 13

Гамма-излучение

Особенность: ярко выраженные корпускулярные свойства. Гамма излучение является следствием явлений, происходящих внутри атомных ядер, а также в результате ядерных реакций.

Слайд 14

Вывод

По мере уменьшения длины волны проявляются и существенные качественные различия электромагнитных волн. Излучения различных длин волн отличаются друг от друга по способу их получения и методом регистрации, то есть по характеру взаимодействия с веществами.

Посмотреть все слайды

Министерство образования и молодежной политики Чувашской Республики «Предметы изучения, видимо, должны строится не по отдельным дисциплинам, а по проблемам». В.И. Вернадский. Размышления натуралиста. – М., 1977. Кн. 2. С. 54. Тема: ШКАЛА ЭЛЕКТРОМАГНИТНЫХ ИЗЛУЧЕНИЙ Работу выполнила ученица 10 И класса общеобразовательной средней школы №39 Гаврилова Екатерина Работу проверил(а): учитель физики высшей категории Гаврилова Галина Николаевна Чебоксары - 2004 2. Цели исследования 1.Прикоснуться к современным теориям физических явлений, благодаря которым можно проникнуть в суть вещей науки о неживой природе 2. Исследовать тенденций развития знаний об электромагнитных излучениях. 3. Дополнить новыми сведениями имеющуюся «школьную» шкалу электромагнитных волн. 4. Доказать познаваемость мира и наше развитие в нем. 5. Провести анализ усвоения информации изучаемой темы моими ровесниками. 6. Спрогнозировать результат изучения темы. Ход исследования I этап. Изучение литературы: учебники, энциклопедии, справочники, периодическая печать, Интернет. II этап. Создание проекта – презентации (слайды № 1-19). III этап. Исследование усвоения материала школьного курса физики с новациями: Составление анкеты №1, №2. Ознакомление учащихся с анкетой №1. 3. Ознакомление учащихся с проектом – презентацией. 4. Ознакомление учащихся с анкетой №2. 5. Анализ анонимных анкет (прогноз, результат). Тип выборки при работе с анкетой – доступная. Количество опрошенных - 93человека. 6. Построение графиков. IV этап. Выводы ученика (слайд №19). Чебоксары - 2004 3. Задачи моего исследования 1. 2. 3. 4. Отразить на шкале электромагнитных волн области действия «биоСВЧ», террагерционных и торсионных полей. Указать их источники, свойства и применение. Исследовать влияние мною созданного проекта-презентации на усвоение материала школьного курса физики по теме «Электромагнитная шкала» моими ровесниками из школы №39 и музыкального училища (I курс). Проверить предположения о том, что эффективность подготовки к экзаменам при знакомстве с моим проектом повышается. Чебоксары - 2004 4. Шкала электромагнитных волн - Видимый свет - Гамма лучи - Инфракрасное излучение - Рентгеновские лучи - Ультрафиолетовые волны - Микроволны - Радиоволны Чебоксары - 2004 5. Источники излучений Низкочастотные волны Токи высокой частоты, генератор переменного тока, электрические машины. Радиоволны Колебательный контур, вибратор Герца, полупроводниковые приборы, лазеры. Средние и длинные волны АМ радио-антены-излучатели. Ультракороткие волны TV и FM радио-антены-излучатели. Сантиметровые волны Радио-антены-излучатели. Био - СВЧ Биологические клетки живых организмов (солитоны на ДНК). Инфракрасное излучение Солнце, электролампы, космос, ртутно-кварцевая лампа, лазеры, все нагретые тела. Терагерцовые волны Электрический контур с быстрыми колебаниями частиц, свыше сотен миллиардов (10 10) в секунду. Видимые лучи Солнце, электрическая лампа, люминесцентная лампа, лазер, электрическая дуга. Ультрафиолетовые излучение Космос, солнце, лазер, электрическая лампа. Рентгеновские лучи Небесные тела, солнечная корона, бетатроны, лазеры, трубки Рентгена. Гамма лучи Космос, радиоактивный распад, бетатрон. Чебоксары - 2004 6. Шкала длин волн и распределение на области излучений Инфракрасное излучение, нм 15000 10000 8000 6000 4000 2000 1500 1000 760 Е, эВ 0,08 0,12 0,16 0,21 0,31 0,62 0,83 1,24 1,63 Видимое излучение красный оранжевый желтый зеленый голубой синий фиолетовый, нм 760 620 590 560 500 4130 450 380 Е, эВ 1,63 2,00 2,10 2,23 2,48 2,59 2,76 3,27 Ультрафиолетовое излучение, нм 380 350 300 250 200 Е, эВ 3,27 3,55 4,14 4,97 6,21 Чебоксары - 2004 Е (эВ) 1242 (нм) 7. Классификация радио волн Наименование радиоволн Диапазон частот, = [Герц = Гц = 1/с] Диапазон длин волн, ‫ [ =ע‬метр = м] < 3*104 СВЫШЕ 10 000 Длинные 3*104 - 3*105 10 000 – 1000 Средние 3*105 - 3*106 1000 – 100 Короткие 3*106 - 3*107 100 – 10 УКВ. Метровые 3*107 - 3*108 10 – 1 УКВ. Дециметровые 3*108 - 3*109 1 – 0,1 УКВ. Сантиметровые 3*109 - 3*1010 0,1 – 0,01 УКВ. Миллиметровые 3*1010 - 3*1011 0,01 – 0,001 УКВ. Микроволновые 3*1011 - 3*1012 0,001 – 0,000 001 Сверхдлинные Чебоксары - 2004 Сведения УВЧ –терапия, СВЧ – терапия, эндорадиозонды Используются в телеграфии, радиовещании, телевидении, радиолокации. Используются для исследования свойств вещества. Получают в магнитронных, клистронных генераторах и мазерах. Применяются в радиолокации, радиоспектроскопии и радиоастрономии. Диагностика с помощью картирования тепловых полей организма 8. Область действия «био – СВЧ» ! =9,8 нм. Область действия «био-СВЧ» - вся шкала электромагнитных волн. Пик максимального воздействия при =9,8 нм. В 26 лет китайский врач Цзян Каньчжена, который параллельно с медициной занимался кибернетикой, квантовой механикой, радиотехникой, в1959 году высказал гипотезу: «В процессе жизнедеятельности любого организма его атомы и молекулы обязательно связаны между собой единым носителем энергии и информации – биоэлектромагнитным полем» в работе «Теория управления полями», где обосновал возможность прямой передачи информации от одного мозга к другому с помощью радио волн. Каеьчжен фокусировал с помощью линзы из диэлектрика электромагнитное излучение мозга оператора-индуктора, а затем пропускал через чувствительный усилитель, собственной конструкции, направлял на реципиента. 90% реципиентов утверждали, что возникающие у них образы становились чрезвычайно четкими. Такая система пропускала электромагнитные волны только сверхвысокой частоты, следовательно существование био-СВЧ-связи можно было считать доказанным. В 1987 году в Советском Союзе доктор Цзян поставил опыт на себе, позже метод омоложения захотел проверить на себе его 80-летний отец, в результате исчезли 20-30 летние хронические заболевания, аллергический зуд, шум в ушах, доброкачественная опухоль. На месте лысины через полгода выросли волосы, а седые стали черными. Через год вырос зуб на месте выпавшего 20 лет назад. Способы лечения рака и СПИДа привели в 1991году к изобретению: «Способ регулирования иммунологических реакций в области борьбы с раком и трансплантации органов». При передаче интегральной информации, считанной с ДНК донора на всю ДНК реципиента возможен не только положительный, но и отрицательный эффект в виде куроуток, козокроликов и мух с глазами по всему телу, лапкам и усикам. Поэтому метод переброски генетической информации полевым путем требует дальнейших углубленных исследований и всеобщей научной поддержки. Чебоксары - 2004 9. Свойства электромагнитных излучений Низкочастотные волны Невидимы. Волновые свойства сильно проявлены, намагничивают ферромагнитные материалы, поглощаются воздухом слабо. Радиоволны Невидимы. Подразделяются на диапазоны: сверхдлинные, длинные, средние, короткие, УКВ – ултракороткие (метровые, деци-, санти-, миллиметровые).При действии на вещество поляризуют диэлектрики, способствуют возникновению токов проводимости в биологических жидкостях. Средние и длинные волны Невидимы. Хорошо распростронаются в воздухе, отражаются от облаков и атмосферы. Ультракороткие волны Невидимы. TV и FM радио волны проходят сквозь ионосферу без отражения от неё. Сантиметровые волны Невидимы. Проходят сквозь ионосферу без отражения от неё. Био - СВЧ Невидимы. Выполняют свойства сверхвысокочастотных электромагнитных волн. Инфракрасное излучение При действии на вещество усиливаются фотобиологические процессы. У живых организмов активизируются терморецепторы. Невидимы. Хорошо поглощается телами, изменяет электрическое сопротивление тел, действует на термоэлементы, фотоматериалы, проявляет волновые свойства, хорошо проходит через туман, другие непрозрачные тела, невидимо. Терагерцовые волны При действии на вещество усиливаются фотобиологические процессы. Огибают препятствия (кристаллические решётки), фокусируются, с их помощью можно заглянуть в глубь живого организма, не нанося ему ущерба. Сочетают качества излучений соседних диапазонов. Видимые лучи При действии на вещество усиливаются фотобиологические процессы. Способствуют фотосинтезу растений, фотоэффекту в металлах и полупроводниках, появлению свободных электронов. Преломляются, отражаются, интерферируют, дифрагируют, разлагаются в спектр. Делают видимыми окружающие предметы, активизируют зрительные рецепторы. Ультрафиолетовые излучение При действии на вещество усиливаются фотобиологические процессы. Невидимо, в малых дозах лечебно, оказывает бактерицидные воздействия, вызывает фотохимические реакции, поглощается озоном, действует на фотоэлементы, фотоумножители, люминесцентные вещества. Рентгеновские лучи При действии на вещество дают когерентное рассеяние., ионизацию, фото- и камптон-эффекты. Невидимы. Обладают большой проникающей способностью, вызывают люминесценцию, активно воздействуют на клетки живого организма, фотоэмульсию, ионизируют газы, взаимодействуют с атомами (ионами) кристаллической решётки, проявляют корпускулярные свойства. Гамма лучи Невидимы. Ионизируют атомы и молекулы тел. Дают фото- и камптон-эффект. Разрушают живые клетки. Не взаимодействуют с электрическими и магнитными полями. Имеют очень высокую проникающую способность. Чебоксары - 2004 10. Звук. Область звуковых волн v = 20Гц – 20 000Гц Инфразвук Слышимый звук = 17м – 17мм Интенсивность или громкость звука (определяется в деци Беллах в честь изобретателя телефона Александра Грэхема Белла) Ультразвук При длительном и интенсивном воздействии одного и того же раздражителя у человека наступает «запредельное торможение», как охранная, приспособительная реакция организма. Скорость звука зависит от упругих свойств среды и от температуры, например: в воздухе =331м/с (при =00С) и =331,7м/с (при =10С); в воде =1 400м/с; в стали =5000м/с, в вакууме®®® =0м/с Чебоксары - 2004 Звук Интенсивность, мкВт/м2 Уровень звука, дБ Порог слышимости 0,000 001 0 Спокойное дыхание 0,000 01 10 Шум спокойного сада 0,000 1 20 Перелистывание страниц газеты 0,001 30 Обычный шум в доме 0,01 40 Пылесос 0,1 50 Обычный разговор 1,0 60 Радио 10 70 Оживленное уличное движение 100 80 Поезд на эстакаде 1 000,0 90 Шум в вагоне метро 10 000,0 100 Гром 100 000,0 110 Порог ошущений 1 000 000,0 120 11. Применение электромагнитных излучений Низкочастотные волны Плавка и закалка металлов, изготовление постоянных магнитов, в электротехнической промышленности. Радиоволны Радиосвязь, телевидение, радиолокация. УВЧ-терапия, эндорадиозонды. Био - СВЧ СВЧ-терапия. Инфракрасное излучение Тепловое излучение в медицыне. Фотографирование в темноте и тумане. Резка, плавка, сварка тугоплавких металлов лазерами, сушка свежеокрашенных металлических поверхностей. В приборах ночного видения. Терагерцовые волны Можно обнаружить болезни, кариес зубов, процессы старения. В астрономии. Спецслужбам на таможне можно читать закрытые документы, наблюдать за людьми в их собственных домах, разглядеть спрятанное оружие, т.к. всё прозрачно для этих волн, даже твёрдые тела. Применяются в биологии, химии, медицине, экологии. Видимые лучи В медицине светолечение, лазерная терапия.Освещение, голография, фотоэффект, лазеры. Ультрафиолетовые излучение В медицине светолечение УФ-терапия, синтез витамина Д. Закаливание живых организмов, свечение микроорганизмов, лазеры, люминесценция в газоразрядных лампах. Рентгеновские лучи Рентгенотерапия, рентгеноструктурный анализ, рентгенография, лазеры. Гамма лучи Выявление внутренних структур атома. В медицине терапия и диагностика. В геологии каротаж. Лазеры. Военное дело. Дефектоскопия и контроль технологических процессов. Чебоксары - 2004 12. Свойства торсионных полей (торсионное = спинорное = аксионное поле) 1. Образуется вокруг вращающегося объекта и представляет собой совокупность микровихрей пространства. Так как вещество состоит из атомов и молекул, а атомы и молекулы имеют собственный спин - момент вращения, вещество всегда имеет ТП. Вращающееся массивное тело тоже имеет ТП. Существует волновое и статическое ТП. Может возникать за счет особой геометрии пространства. Еще один источник электромагнитные поля. 2. Связь с вакуумом. Составляющая вакуума - фитон - содержит два кольцевых пакета, вращающихся в противоположных направлениях (правый и левый спин). Первоначально они скомпенсированы и суммарный момент вращения равен нулю. Поэтому вакуум никак себя не проявляет. Среда распространения торсионных зарядов - физический вакуум. 3. Свойства магнита. Торсионные заряды одноименного знака (направления вращения) - притягиваются, разноименного - отталкиваются. 4. Свойство памяти. Объект, создает в пространстве (в вакууме) устойчивую спиновую поляризацию, остающуюся в пространстве после удаления самого объекта. 5. Скорость распространения - практически мгновенно из любой точки Вселенной в любую точку Вселенной. 6. Данное поле имеет свойства информационного характера - оно не передает энергию, а передает информацию. Торсионные поля - это основа Информационного Поля Вселенной. 7. Энергия - как вторичное следствие изменения торсионного поля. Изменения в торсионных полях сопровождаются изменением физических характеристик вещества, выделением энергии. 8. Распространение через физические среды. Так как ТП не имеет энергетических потерь, то оно не ослабляется при прохождении физических сред. От него нельзя спрятаться. 9. Человек может непосредственно воспринимать и преобразовывать торсионные поля. Мысль имеет торсионную природу. 10. Для торсионных полей нет ограничения во времени. Торсионные сигналы от объекта могут восприниматься из прошлого, настоящего и будущего объекта. 11. Торсионные поля являются основой мироздания. Чебоксары - 2004 Оранжевый 620 – 585 35 Желтый 585 – 575 10 Желто-зеленый 575 – 550 25 Зеленый 550 – 510 40 Голубой 510 – 480 30 Синий 480 – 450 30 Фиолетовый 450 – 390 60 Длина волны, нм Чебоксары - 2004 1,2 180 1 800 – 620 0,8 Красный 0,6 Ширина участка, нм 0,4 Длина волны, нм 0,2 Цвет 760 740 720 700 680 660 640 620 600 580 560 555 540 520 500 480 460 440 420 400 Белый 0 13.Свет –видимое излучение Дисперсия света Чувствительность глаза, усл. ед. 14. Анкета № 1 (О необходимости создания проекта – презентации) 1. Что вы думаете о свете и звуке: да нет а) Это колебания? 84 9 б) Это электромагнитные явления? 77 16 2. Можно ли ноту «до» и ли «ре» выразить в Герцах? 79 14 3. «Поле» в физике – это колебания? 55 38 4. Вы знаете о «био –СВЧ» ? 2 91 5. Вы хотите узнать? 93 0 6. Вы знаете о торсионном, спинорном, аксионном поле? 3 90 7. Вы хотите узнать? 93 0 8. Вы знаете о террагерцовом излучении? 2 91 9. Вы хотите узнать? 93 0 10. Будете ли вы использовать проект-презентацию, выполненную на лазерном диске, для изучения заданных в этой анкете вопросов? 93 0 а) На домашнем компьютере? 40 53 б) В школьных условиях? 53 40 11. Можно ли использовать ваши анонимные ответы в проекте-презентации? Спасибо. 93 0 Чебоксары - 2004 15. Анкета № 2. (Об использовании готовой презентации) 1. Какова классификация электромагнитных излучений? 2. Их источники? 3. Их свойства? 4. Их применение? 5. Каков диапазон волн «био-СВЧ» и терагерцовых лучей? 6. Их источники? 7. Их свойства? 8. Их применение? 9. Диапазон «видимых» и «слышимых» колебаний и их особенности. Если правильных ответов 10, то «+». Если правильных ответов 5, то «+-». Если правильных ответов менее 5,то «-». Выводы: 1. Имеется научная информация, она доступна не всем. 2.Возникла необходимость передачи информации (по результатам анализа анкеты №1). 3. Проект – презентация – способ передачи информации. Чебоксары - 2004 16. Анализ исследовательской работы Отрицательный результат проверок знаний (в %% от количества учащихся) 80 73,68 66,67 70 60 39,29 50 25,93 40 30 18,4211,11 20 0 10 0 2,63 Итоговая проверка После ознакомления До ознакомления 0 Чебоксары - 2004 10 А 10 Б 1 курс 17. Анализ исследовательской работы Удовлетворительный результат проверок знаний (в %% от количества учащихся) 44,44 45 42,86 40 22,22 35 30 21,43 21,05 25 25,93 35,71 28,95 20 15 10 5 10,53 10 А 10 Б 1 курс Итоговая проверка После ознакомления До ознакомления 0 Чебоксары - 2004 18. Анализ исследовательской работы Хороший и отличный результат проверок знаний (в %% от количества учащихся) 90 80 86,84 74,07 70 60 50 40 30 20 10 0 64,29 29,63 46,43 52,63 Чебоксары - 2004 После ознакомления До ознакомления 5,26 1 курс 10 Б 10 А 39,29 Итоговая проверка 11,11 19. Выводы: Природа постепенно открывает свои тайны людям для изучения и использования их во благо всей Земли и ради Жизни на ней. Шкала электромагнитных волн есть отражение проявлений природы и наших знаний о них только на сегодняшний день. Чебоксары - 2004 20. Слайд учителя физики Гавриловой Галины Николаевны 1. Материалы данного проекта используются учениками с разным уровнем подготовленности для изучения, закрепления, повторения материала; подготовки к обобщающим, зачетным, контрольным работам и экзаменам. 2. Учитель и ученик стали сотрудничать в ходе создания проекта – презентации по инициативе не учителя, а ученика. 3. Проект потребовал от ученика и от учителя овладение навыками работы в Интернете, создал реальную возможность общения со всем миром. 4. Проект дал возможность дистанционного обучения детей не имеющих возможности посещать школу, но желающих приобрести знания. 5. Проект обеспечивает благоприятные условия самостоятельного изучения материала в выбранном темпе с различной глубиной погружения и желаемым числом повторений. 6. Проект качественно изменяет содержание методических разработок учителя, которые теперь могут быть предложены коллегам. 7. Проект – презентация, выполнен ученицей осмысленно, структурирована информация, произведены расчеты, построены графики, сделаны выводы, что значительно повышает качество исследовательской работы. Чебоксары - 2004 21. Литература. 1. Мякишев Г.Я., Буховцев Б.Б.Физика 11. – М.: Просвещение, 1991. –С.157 – 158. 2. Башарин В.Ф., Горбушин Ш.А. Тезаурус курса физики средней школы: Фонд образовательного стандарта по физике средней школы (понятия, явления, законы, методы познания) («Для тех, кто учит – для тех, кто учится»).- Ижевск: Издательство Удмуртского университета, 2000. –С. 166 – 169. 3. Енохович А.С. Справочник по физике. - 2-е изд., перераб. И доп.- М.: Просвещение, 1990.-С.215. 4. Николаев С. Территория ТЕРА // Юный техник. – 2003. - №2. - С.12 – 19. 5. Доусвелл П. Неизвестное об известном. – М.: РОСМЭН, 2000. – С.79. 6. Крейг А., Росни К. НАУКА. Энциклопедия. – М.: РОСМЭН, 1998. - С.69. 7.Мэйнард К. Космос. Энциклопедия юного ученого. – М.: РОСМЭН, !999. – С.89. 8. Эллиот Л., Уилкокс У. ФИЗИКА. – М.: Наука, 1975. – С.356. 9. Демкин С. Сенсационные открытия доктора Цзян Каньчжена. Интернет. 10. Пути развития цивилизации. Взгляд из ХХI века: Сборник научных статей / Сост. Р.А. Парошина. – Красноярск, 2003. – С.64. 11. Уваров В.В. Волчок на столе. Природа торсионных полей. // Свет. - 1991. - №12. – С.21. Чебоксары - 2004

«Волны в океане» - Разрушительные последствия Цунами. Движение земной коры. Изучение нового материала. Узнать объекты на контурной карте. Цунами. Длина в океане до 200 км, а высота 1 м. Высота Цунами у берега до 40 м. Г.Пролив. В.Залив. Ветровые волны. Приливы и отливы. Ветер. Закрепление изученного материала. Средняя скорость Цунами 700 – 800 км/час.

«Волны» - «Волны в океане». Распространяются со скоростью 700-800км\ч. Угадай, какой внеземной объект вызывает приливы и отливы? Наибольшие приливы в нашей стране – на Пенжинской губе в Охотском море. Приливы и отливы. Длинные пологие волны, без пенистых гребней, возникающие в безветренную погоду. Ветровые волны.

«Сейсмические волны» - Полное разрушение. Ощущается почти всеми; многие спящие просыпаются. Географическое распространение землетрясений. Регистрация землетрясений. На поверхности аллювия образуются просадочные котловины, заполняющиеся водой. Меняется уровень воды в колодцах. На земной поверхности видны волны. Общепринятого объяснения таких явлений пока нет.

«Волны в среде» - То же относится к газообразной среде. Процесс распространения колебаний в среде называется волной. Следовательно, среда должна обладать инертными и упругими свойствами. Волны на поверхности жидкости имеют как поперечную, так и продольную компоненты. Следовательно, поперечные волны не могут существовать в жидкой или газообразной средах.

«Звуковые волны» - Процесс распространения звуковых волн. Тембр является субъективной характеристикой восприятия, в целом отражающей особенность звука. Характеристики звука. Тон. Рояль. Громкость. Громкость – уровень энергии в звуке – измеряется в децибелах. Звуковая волна. На основной тон, как правило, накладываются дополнительные тоны (обертоны).

«Механические волны 9 класс» - 3.По природе волны бывают: А. Механическими или электромагнитными. Плоская волна. Объясните ситуацию: Всё описать не хватит слов, Весь город перекошенный. В тихую погоду - нет нас нигде, А ветер подует - бежим по воде. Природа. Что «движется» в волне? Параметры волны. В. Плоскими или сферическими. Источник совершает колебания вдоль оси OY перпендикулярно ОХ.

Данная презентация помогает учителю более наглядно провести урок -лекцию в 11 классе по физике при изучениии темы "Излучения и спектры". Знакомит учащихся с различными видами спектров, спектральным анализом, шкалой электромагнитных излучений.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Излучение и с п е к т р ы Казанцева Т.Р. учитель физики высшей категории МКОУ Луговской СОШ Зонального района Алтайского края Урок – лекция 11 класс

Всё, что видим мы, - видимость только одна, Далеко от поверхности мира до дна. Полагай несущественным явное в мире, Ибо тайная сущность вещей не видна. Шекспир

1. Познакомить учащихся с различными видами излучений, их источниками. 2. Показать разные виды спектров, их практическое использование. 3. Шкала электромагнитный излучений. Зависимость свойств излучений от частоты, длины волны. Цели урока:

Источники света Холодные Горячие электролюминесценция фотолюминесценция катодолюминесценция лампы дневного света газоразрядные трубки огни святого Эльма полярные сияния свечение экранов плазменных телевизоров фосфор краски свечение экранов телевизо ров с ЭЛТ некоторые глубоководные рыбы микроорганизмы Солнце лампа накаливания пламя светлячки трупные газы тепловые х емилюминесценция

Это излучение нагретых тел. Тепловое излучение, согласно Максвеллу, обусловлено колебаниями электрических зарядов в молекулах вещества, из которых состоит тело. Тепловое излучение

Электролюминесценция При разряде в газах электрическое поле сообщает электронам большую кинетическую энергию. Часть энергии идёт на возбуждение атомов. Возбуждённые атомы отдают энергию в виде световых волн.

Катодолюминесценция Свечение твёрдых тел, вызванное бомбардировкой их электронами.

Хемилюминесценция Излучение, сопровождающее некоторые химические реакции. Источник света остаётся холодным.

Сергей Иванович Вавилов - российский физик. Родился 24 марта 1891 г. в Москве Сергей Вавилов в Институте физики и биофизики начал эксперименты по оптике - поглощению и испусканию света элементарными молекулярными системами. Вавиловым были изучены основные закономерности фотолюминесценции. Вавиловым, его сотрудниками и учениками осуществлено практическое применение люминесценции: люминесцентный анализ, люминесцентная микроскопия, создание экономичных люминесцентных источников света, экранов Фотолюминесценция Некоторые тела сами начинают светиться под действием падающего на них излучения. Светящиеся краски, игрушки, лампы дневного света.

Плотность излучаемой энергии нагретыми телами, согласно теории Максвелла, должна увеличиваться при увеличении частоты (при уменьшении длины волны). Однако опыт показывает, что при больших частотах (малых длинах волн) она уменьшается. Абсолютно чёрным телом называется тело, которое полностью поглощает падающую на него энергию. В природе абсолютно чёрных тел нет. Наибольшую энергию поглощают сажа и чёрный бархат. Распределение энергии в спектре

Приборы, с помощью которых можно получить чёткий спектр, который затем можно исследовать, называются спектральными приборами. К ним относятся спектроскоп, спектрограф.

Виды спектров 2.Полосатые в газообразном молекулярном состоянии, 1. Линейчатые в газообразном атомарном состоянии, Н Н 2 3.Непрерывные или сплошные тела в твёрдом и жидком состоянии, сильно сжатые газы, высокотемпературная плазма

Сплошной спектр излучают нагретые твёрдые тела. Сплошной спектр, согласно Ньютону, состоит из семи участков - красного, оранжевого, жёлтого, зелёного, голубого, синего и фиолетового цветов. Такой спектр даёт также высокотемпературная плазма. Сплошной спектр

Состоит из отдельных линий. Линейчатые спектры излучают одноатомные разрежённые газы. На рисунке показаны спектры железа, натрия и гелия. Линейчатый спектр

Спектр, состоящий из отдельных полос, называется полосатым спектром. Полосатые спектры излучаются молекулами. Полосатые спектры

Спектры поглощения - спектры, получающиеся при прохождении и поглощении света в веществе. Газ поглощает наиболее интенсивно свет именно тех длин волн, которые сам он испускает в сильно нагретом состоянии. Спектры поглощения

Спектральный анализ Атомы любого химического элемента дают спектр, не похожий на спектры всех других элементов: они способны излучать строго определённый набор длин волн. Метод определения химического состава вещества по его спектру. Спектральный анализ применяется для определения химического состава ископаемых руд при добыче полезных ископаемых, для определения химического состава звезд, атмосфер, планет; является основным методом контроля состава вещества в металлургии и машиностроении.

Видимый свет - это электромагнитные волны в интервале частот, воспринимаемых человеческим глазом (4,01014-7,51014 Гц). Длина волн от 760 нм (красный) до 380 нм (фиолетовый). Диапазон видимого света- самый узкий во всем спектре. Длина волны в нем меняется менее чем в два раза. На видимый свет приходится максимум излучения в спектре Солнца. Наши глаза в ходе эволюции адаптировались к его свету и способны воспринимать излучение только в этом узком участке спектра. Марс в видимом излучении Видимый свет

Электромагнитное излучение, невидимое глазом в диапазоне длин волн от 10 до 380 нм Ультрафиолетовое излучение способно убивать болезнетворных бактерий, поэтому его широко применяют в медицине. Ультрафиолетовое излучение в составе солнечного света вызывает биологические процессы, приводящие к потемнению кожи человека – загару. В качестве источников ультрафиолетового излучения в медицине используются газоразрядные лампы. Трубки таких ламп изготавливают из кварца, прозрачного для ультрафиолетовых лучей; поэтому эти лампы называют кварцевыми лампами. Ультрафиолетовое излучение

Это невидимое глазом электромагнитное излучение, длины волн которого находятся в диапазоне от 8∙10 –7 до 10 –3 м Фотография головы в инфракрасном излучении Голубые области - более холодные, жёлтые - более тёплые. Области разных цветов отличаются по температуре. Инфракрасное излучение

Вильгельм Конрад Рентген - немецкий физик. Родился 27 марта 1845 г. в городе Леннеп, близ Дюссельдорфа. Рентген был крупнейшим экспериментатором, он провёл множество уникальных для своего времени экспериментов. Наиболее значительным достижением Рентгена было открытие им X-лучей, которые носят теперь его имя. Это открытие Рентгена радикально изменило представления о шкале электромагнитных волн. За фиолетовой границей оптической части спектра и даже за границей ультрафиолетовой области обнаружилась область ещё более коротковолнового электромагнитного излучения, примыкающего далее к гамма-диапазону. Рентгеновские лучи

При прохождении рентгеновского излучения через вещество уменьшается интенсивность излучения за счёт рассеяния и поглощения. Рентгеновские лучи применяются в медицине для диагностики заболеваний и для лечения некоторых заболеваний. Дифракция рентгеновских лучей позволяет исследовать структуру кристаллических твёрдых тел. Рентгеновские лучи используются для контроля структуры изделий, обнаружения дефектов.

Шкала электромагнитных волн включает в себя широкий спектр волн от 10 -13 до 10 4 м. Электромагнитные волны делятся на диапазоны по различным признакам (способу получения, способу регистрации, взаимодействию с веществом) на радио- и микроволны, инфракрасное излучение, видимый свет, ультрафиолетовое излучение, рентгеновское излучение и гамма-лучи. Несмотря на различие, все электромагнитные волны обладают общими свойствами: они поперечны, их скорость в вакууме равна скорости света, они переносят энергию, отражаются и преломляются на границе раздела сред, оказывают давление на тела, наблюдаются их интерференция, дифракция и поляризация. Шкала электромагнитных волн

Диапазоны волн и источники их излучения

Спасибо за внимание! Домашнее задание: 80, 84-86


Ученица 11 класса Егян Клара Ш К А Л А Э Л Е К Т Р О М А Г Н И Т Н Ы Х И З Л У Ч Е Н И Й

Вся информация от звезд, туманностей, галактик и других астрономических объектов поступает в виде электромагнитного излучения. Шкала электромагнитного излучения. По горизонтальной оси отложены: внизу – длина волны в метрах, вверху – частота колебаний в герцах

Шкала электромагнитных волн Шкала электромагнитных волн простирается от длинных радиоволн до гамма – лучей. Электромагнитные волны различной длины условно делят на диапазоны по различным признакам (способу получения, способу регистрации, характеру взаимодействия с веществом).

Скорость света Всякое излучение можно рассматривать как поток квантов – фотонов, распространяющихся со скоростью света, равной c = 299 792 458 м/с. Скорость света связана с длиной и частотой волны соотношением c = λ ∙ ν

Спектр электромагнитных волн Спектр электромагнитного излучения в порядке увеличения частоты составляют: 1) Радиоволны 2) Инфракрасное излучение 3) Световое излучение 4) Рентгеновское излучение 5) Гамма -излучение Спектром электромагнитных волн называется полоса частот электромагнитных волн, существующих в природе.

Радиоволны Радиоволны представляют собой электромагнитные волны, длины которых превосходят 0.1мм

Виды радиоволн 1. Сверхдлинные волны с длиной волны больше 10км 2. Длинные волны в интервале длин от10км до 1км 3. Средние волны в интервале длин от1км до 100м

Виды радиоволн (продолжение) 4. Короткие волны в интервале длин волн от 100м до 10м 5. Ультракороткие волны с длиной волны меньше 10м

Инфракрасное излучение Инфракрасное излучение – это электромагнитные волны, которые испускает любое нагретое тело, даже если оно не светится. Инфракрасные волны также тепловые волны, т.к. многие источники этих волн вызывают заметное нагревание окружающих тел.

Световое излучение Световое излучение - поток лучистой энергии из инфракрасной, видимой и ультрафиолетовой области спектра, действует в течение нескольких секунд, источником является светящаяся область взрыва.

Рентгеновское излучение Рентгеновское излучение возникает при торможении быстрых заряженных частиц (электронов, протонов и пр.), а также в результате процессов, происходящих внутри электронных оболочек атомов. Применение: медицина, физика, химия, биология, техника, криминалистика, искусствоведение

Гамма-излучение Особенность: ярко выраженные корпускулярные свойства. Гамма излучение является следствием явлений, происходящих внутри атомных ядер, а также в результате ядерных реакций.

Вывод По мере уменьшения длины волны проявляются и существенные качественные различия электромагнитных волн. Излучения различных длин волн отличаются друг от друга по способу их получения и методом регистрации, то есть по характеру взаимодействия с веществами.