Современные способы защиты от коррозии. Как победить ржавчину: основные способы защиты металла от коррозии

Антикоррозионная защита требуется любым инструментальным и конструкционным изделиям, изготовленным из металла, так как в той или иной мере все они испытывают на себе негативное коррозионное влияние среды, окружающей нас.

1

Под коррозией понимают разрушение поверхностных слоев конструкций из стали и чугуна в результате электрохимического и химического воздействия. Она просто-напросто портит металл, разъедает его, делая тем самым непригодным для последующей эксплуатации.

Специалисты доказали, что каждый год примерно 10 процентов от всего добытого металла на Земле тратится на покрытие потерь (обратите внимание – они считаются безвозвратными) от коррозии, ведущей к распылению металла, а также к выходу из строя и порче металлических изделий.

Стальные и чугунные конструкции на первых этапах воздействия коррозии снижают свою герметичность, прочность, электро- и теплопроводность, пластичность, отражательный потенциал и ряд других важных характеристик. Впоследствии конструкции становятся и вовсе непригодными для эксплуатации.

Кроме того, коррозионные явления - причина производственных и бытовых аварий, а иногда и настоящих экологических катастроф. Из проржавевших и прохудившихся трубопроводов для нефти и газа в любой момент может хлынуть поток опасных для жизни человека и для природы соединений. Учитывая все вышесказанное, любой может понять то, насколько важна качественная и эффективная защита от коррозии с применением традиционных и новейших средств и методов.

Полностью избежать коррозии, когда речь идет о стальных сплавах и металлах, невозможно. А вот задержать и снизить негативные последствия ржавления вполне реально. Для этих целей нынче существует множество антикоррозионных средств и технологий.

Все современные методы борьбы с коррозией можно разделить на несколько групп:

  • применение электрохимических способов защиты изделий;
  • использование защитных покрытий;
  • проектирование и выпуск инновационных, высокоустойчивых к процессам ржавления конструкционных материалов;
  • введение в коррозионную среду соединений, способных уменьшить коррозионную активность;
  • рациональное строительство и эксплуатация деталей и сооружений из металлов.

2

Чтобы защитное покрытие справлялось с задачами, которые возлагаются на него, оно должно обладать целым рядом особых качеств:

  • быть износостойким и максимально твердым;
  • характеризоваться высоким показателем прочности сцепления с поверхностью обрабатываемого изделия (то есть обладать повышенной адгезией);
  • иметь такую величину теплового расширения, которая бы незначительно отличалась от расширения защищаемой конструкции;
  • быть максимально недоступным для вредных факторов окружающей среды.

Также покрытие должно наноситься на всю конструкцию как можно более равномерно и сплошным слоем.

Все используемые в наши дни защитные покрытия делят на:

  • металлические и неметаллические;
  • органические и неорганические.

3

Самым распространенным и сравнительно несложным вариантом защиты металлов от ржавления, известным уже очень давно, признается использование лакокрасочных составов. Антикоррозионная обработка материалов такими соединениями характеризуется не только простотой и дешевизной, но еще и следующими положительными свойствами:

  • возможностью нанесения покрытий разных цветовых оттенков - что и элегантный облик конструкциям придает, и надежно защищает их от ржавчины;
  • элементарностью восстановления защитного слоя в случае его повреждения.

К сожалению, лакокрасочные составы имеют совсем небольшой коэффициент термической стойкости, малую стойкость в воде и относительно низкую механическую прочность. По этой причине в соответствии с существующими СНиП их рекомендовано применять в тех случаях, когда на изделия действует коррозия со скоростью не более 0,05 миллиметров в год, а запланированный срок их эксплуатации не превышает десяти лет.

К составляющим современных лакокрасочных составов относят такие элементы:

  • краски: суспензии пигментов с минеральной структурой;
  • лаки: растворы (коллоидные) смол и масел в растворителях органического происхождения (защита от коррозии при их применении достигается после полимеризации смолы либо масла или их испарения под влиянием дополнительного катализатора, а также при нагреве);
  • искусственные и природные соединения, называемые пленкообразователями (например, олифа – самый, пожалуй, популярный неметаллический "защитник" чугуна и стали);
  • эмали: лаковые растворы с комплексом подобранных пигментов в измельченном виде;
  • смягчители и разнообразные пластификаторы: адипиновая кислота в виде эфиров, дибутилфтолат, касторовое масло, трикрезилфосфат, каучук, другие элементы, которые увеличивают эластичность защитного слоя;
  • этилацетат, толуол, бензин, спирт, ксилол, ацетон и другие (данные компоненты нужны для того, чтобы лакокрасочные составы без проблем наносились на обрабатываемую поверхность);
  • инертные наполнители: мельчайшие частицы асбеста, тальк, мел, каолин (они делают антикоррозионные возможности пленок более высокими, а также уменьшают траты других составляющих лакокрасочных покрытий);
  • пигменты и краски;
  • катализаторы (на языке профессионалов – сиккативы): необходимые для быстрого высыхания защитных составов кобальтовые и магниевые соли жирных органических кислот.

Лакокрасочные соединения выбирают с учетом того, в каких условиях эксплуатируется обрабатываемое изделие. Составы на базе эпоксидных элементов рекомендованы для использования в атмосферах, где постоянно присутствуют испарения хлороформа, двухвалентного хлора, а также для обработки конструкций, находящихся в различных кислотах (азотная, фосфорная, соляная и т. п.).

К кислотам также устойчивы и лакокрасочные составы с полихровинилом. Они, кроме того, применяются для предохранения металла от воздействия масел и щелочей. А вот для защиты конструкций от газов чаще применяются составы на базе полимеров (эпоксидных, фторорганических и иных).

Очень важно при подборе защитного слоя учитывать требования российских СНиП для разных отраслей промышленности. В таких саннормах четко указывается, какие составы и методы защиты от коррозии можно использовать, а от каких лучше отказаться. Например, в СНиП 3.04.03-85 изложены рекомендации по защите различных строительных сооружений:

  • магистральных газо- и нефтепроводов;
  • обсадных труб из стали;
  • тепломагистралей;
  • железобетонных и стальных конструкций.

4

На металлических изделиях вполне можно формировать посредством электрохимической либо химической обработки специальные пленки для защиты их от ржавления. Чаще всего создаются фосфатные и оксидные пленки (опять-таки, обязательно принимаются во внимание положения СНиП, так как механизмы защиты таких соединений разные для различных изделий).

Фосфатные пленки подходят для антикоррозионной защиты цветных и черных металлов. Суть такого процесса заключается в погружении изделий в нагретый до определенной температуры (в районе 97 градусов) раствор цинка, железа или марганца с кислыми фосфорными солями. Получающаяся при этом пленка идеальна для нанесения на нее лакокрасочного состава.

Заметим, что фосфатный слой сам по себе не отличается длительным сроком применения. Он малоэластичный и совсем непрочный. Используется фосфатирование для защиты деталей, которые работают при высоких температурах или в соленой воде (например, в морской).

Также ограниченно используются и оксидные защитные пленки. Получают их при обработке металлов в растворах щелочей под действием тока. Известным раствором для оксидирования является едкий натр (четырехпроцентный). Операцию получения оксидного слоя нередко называют воронением, так как на поверхности мало- и высокоуглеродистых сталей пленка характеризуется красивым черным цветом.

Оксидирование производится в ситуациях, когда начальные геометрические параметры нужно сохранить в неизменном виде. Оксидный слой обычно наносят на точные приборы, стрелковое вооружение. Толщина такой пленки в большинстве случаев не превышает полутора микронов.

Другие способы защиты от коррозии с применением неорганических покрытий:

5

Если изделия из металла подвергнуть поляризации, скорость ржавления, обусловленного электрохимическими факторами, можно существенно уменьшить. Электрохимическая антикоррозионная защита бывает двух видов:

  • анодной;
  • катодной.

Анодная технология подходит для материалов из:

  • сплавов (высоколегированных) на базе железа;
  • с малым уровнем легирования;
  • углеродистых сталей.

Суть методики анодной защиты проста: металлическое изделие, которому требуется придать антикоррозионные свойства, подключается к катодному протектору либо к "плюсу" источника (внешнего) тока. Данная процедура обеспечивает уменьшение скорости ржавления в несколько тысяч раз. В качестве катодного протектора могут выступать элементы и соединения с высоким положительным потенциалом (свинец, платина, диоксид свинца, платинированная латунь, тантал, магнетит, углерод и другие).

Анодная антикоррозионная защита будет результативной только в том случае, если аппарат для обработки конструкций отвечает далее указанным запросам:

  • на нем нет заклепок;
  • сварка всех элементов выполнена максимально качественно;
  • пассивирование металла выполняется в технологической среде;
  • число зазоров и щелей минимально (или же они отсутствуют).

Описанный вид электрохимической защиты небезопасен из-за риска активного анодного растворения конструкций во время приостановки подачи тока. В связи с этим он осуществляется только тогда, когда имеется специальная система контроля выполнения всех предусмотренных технологической схемой операций.

Более распространенной и менее опасной считается катодная защита, которая годится для металлов, не имеющих склонности к пассивации. Подобный метод предполагает подсоединение конструкции к электродному отрицательному потенциалу или к "минусу" источника тока. Катодная защита используется для следующих видов оборудования:

  • емкости и аппараты (их внутренние части), эксплуатируемые на химических предприятиях;
  • буровые установки, кабели, трубопроводы и иные подземные сооружения;
  • элементы береговых конструкций, которые соприкасаются с соленой водой;
  • механизмы, изготовленные из , высокохромистых и медных сплавов.

Анодом в данном случае выступает уголь, чугун, металлолом, графит, сталь.

6

На производственных предприятиях с коррозией можно с успехом справляться посредством модификации состава агрессивной атмосферы, в которой работают металлические детали и конструкции. Существует два варианта снижения агрессивности среды:

  • введение в нее ингибиторов (замедлителей) коррозии;
  • удаление из среды тех соединений, которые являются причиной возникновения коррозии.

Ингибиторы, как правило, используются в системах охлаждения, цистернах, ваннах для выполнения травильных операций, различных резервуарах и прочих системах, в коих коррозионная среда имеет примерно постоянный объем. Замедлители подразделяют на:

  • органические, неорганические, летучие;
  • анодные, катодные, смешанные;
  • работающие в щелочной, кислой, нейтральной среде.

Ниже указаны самые известные и часто используемые ингибиторы коррозии, которые отвечают требованиям СНиП для разных производственных объектов:

  • бикарбонат кальция;
  • бораты и полифосфаты;
  • бихроматы и хроматы;
  • нитриты;
  • органические замедлители (многоосновные спирты, тиолы, амины, аминоспирты, аминокислоты с поликарбоксильными свойствами, летучие составы "ИФХАН-8А", "ВНХ-Л-20", "НДА").

А вот уменьшить агрессивность коррозионной атмосферы можно такими методами:

  • вакуумированием;
  • нейтрализацией кислот при помощи едкого натра либо извести (гашеной);
  • деаэрацией с целью удаления из кислорода.

Как видим, на сегодняшний день существует немало способов защиты металлических конструкций и изделий. Важно лишь грамотно подобрать оптимальный для каждого конкретного случая вариант, и тогда детали и сооружения из стали и чугуна будут служить очень и очень долго.

7

Мы хотим очень кратко рассмотреть данные СНиП, описывающие требования к защите от ржавчины строительных (алюминиевых, металлических, стальных, железобетонных и иных) конструкций. В них даются рекомендации по использованию разных методов антикоррозионной защиты.

СНиП 2.03.11 предусматривают защиту поверхностей строительных конструкций следующими способами:

  • пропиткой (уплотняющего типа) материалами с повышенной химической стойкостью;
  • оклейкой пленочными материалами;
  • применением разнообразных лакокрасочных, мастичных, оксидных, металлизированных покрытий.

По сути, данные СНиП позволяют использовать все описанные нами способы защиты металлов от ржавления. При этом правила оговаривают состав конкретных защитных средств в зависимости от того, в какой среде располагается строительное сооружение. С этой точки зрения среды могу быть: средне-, слабо- и сильноагрессивными, а также полностью неагрессивными. Также в СНиП принято деление сред на биологически и химически активные, на твердые, жидкие и газообразные.

Коррозия оказывает разрушительное действие на изделия из металла и сплавы. При взаимодействии с окружающей средой металлические изделия покрываются пятнами в виде ржавчины. Чем более активный металл, тем он сильнее подвержен коррозии.

Коррозия оказывает разрушительное действие на автомобили, суда, коммуникации и другие металлические изделия, что может привести к утечке нефти, газа и другим негативным последствиям. Она отрицательно влияет на здоровье человека, а продукты окисления загрязняют окружающую среду.

Недопустима коррозия в авиационной, химической и атомной промышленности. Порой затраты на ремонт металлических изделий превышают стоимость материала, который был израсходован на их изготовление.

Основные виды коррозионных процессов

Виды коррозии металлов можно разделить по следующим признакам: характеру разрушения, коррозионной среде и механизму действия.

Исходя из характера разрушений, коррозия может быть:

  • сплошной. При этом она может быть равномерной и неравномерной. При равномерной разрушается вся поверхность изделия. При неравномерной появляются пятна и точечные углубления;
  • межкристаллитной. В этом случае она проникает вглубь изделия по границам зерен металла;
  • транскристаллитной, при этом металл рассекается трещиной через зерно;
  • избирательной. Происходит разрушение одной из составляющих сплава. Например, в латуни может разрушаться цинк.
  • подповерхностной. Начинается на поверхности и постепенно проникает в верхние слои металла.

Существуют следующие виды коррозионной среды:

  • атмосфера;
  • почва;
  • жидкость (щелочь, кислота или солевые растворы).

Механизм действия разделяет коррозию на химическую и электрохимическую.

Химической коррозией называется процесс, при котором происходит самопроизвольное разрушение металлов. Он происходит при взаимодействии металлических изделий с активно-коррозионной средой, чаще всего газовой. Эти процессы сопровождаются высокими температурами.

В результате происходит одновременное окисление металла и восстановление коррозионной среды. Химическая коррозия происходит также при взаимодействии с органическими жидкостями, например, с нефтепродуктами, спиртом и др.

Электрохимическая коррозия возникает в электролитах, например, в водных растворах. Электрохимическая реакция вызывает электрический ток, который способствует разрушению металла. В этом случае происходят как химические процессы, при которых происходит отдача электронов, так и электрические, при которых движутся электроны.

Разрушение происходит, если соприкасаются разнородные металлы. Поэтому больше подвержены разрушению металлы, в которых много примесей.

Разнородность строения металла приводит к тому, что при электрохимической коррозии образуются по законам гальваники катодно-анодные пары. Если металлические изделия отличаются друг от друга химическим составом, то на поверхности металлических изделий образуется слой ржавчины.

Эта коррозия чаще всего является причиной разрушения металлов. Ниже приведены рисунки, на которых изображен механизм действия электрохимической коррозии.

Во внешней среде наиболее активно на металлические изделия действует кислород, повышенная влажность, оксиды серы, азота, углекислый газ, грунтовые воды. Соленая вода ускоряет процесс окисления, поэтому морские суда ржавеют быстрее, чем речные.

Остановить этот природный процесс невозможно, остается только найти способы защиты от коррозии. Правда, избавиться полностью от коррозионного процесса невозможно, но эти способы помогают замедлить сам процесс.

Методы противостояния коррозионным процессам

Для защиты металлов от коррозии существуют следующие методы:

  • повышение сопротивляемости металлов за счет увеличения химического состава;
  • изоляция металлических покрытий от агрессивного воздействия окружающей среды;
  • снижение агрессивности среды, в которой происходит эксплуатация металлических изделий;
  • электрохимические, которые, благодаря законам гальваники, снижают коррозионные процессы.

Эти методы можно разделить на две большие группы. Первые два метода применяются до того, как металлические изделия будут эксплуатироваться, то есть на стадии их производства. При этом выбираются определенные конструкционные материалы для производства изделия, наносятся различные гальванические и защитные покрытия.

Последние два метода применяются при эксплуатации металлических изделий. При этом для защиты пропускается ток через изделие, снижается агрессивность среды путем добавления различных ингибиторов, таким образом, до эксплуатации само изделие предварительно никак не обрабатывается.

Методы повышения сопротивляемости

Эти методы защиты основаны на создании сплавов, которые обладают антикоррозионными свойствами. К металлу добавляются компоненты, повышающие его коррозионную стойкость. Примером может служить легирование стали хромом.

Метод применяется при изготовлении стали. В результате получаются хромистые нержавеющие стали, которые устойчивы к коррозии. Повышают антикоррозионные характеристики сталей добавкой никеля, меди и кобальта.

На этих поверхностях не появляется ржавчина, но коррозия присутствует. Замедляется коррозия благодаря тому, что к восьми атомам железа добавляется один атом легирующей добавки, а это упорядочивает расположение атомов в кристаллической решетке твердого раствора, что и препятствует коррозии.

Коррозионную устойчивость можно повысить, удалив из металлов или сплавов примеси, которые ускоряют коррозию. Например, железо удаляют из сплавов магния или алюминия, серу из сплавов железа и т.д.

Снижение агрессивности внешней среды и электрохимическая защита

Снижение агрессивности внешней среды достигается путем удаления из нее веществ, которые являются деполяризаторами, или путем изоляции металлов от деполяризатора. Удаление кислорода из среды называется раскислением.

Для замедления коррозионного процесса в окружающую среду вводятся специальные вещества – ингибиторы. Они могут быть как органическими, так и неорганическими. Молекулы ингибиторов поглощаются поверхностью металла и, тем самым, способствуют резкому снижению скорости растворения металла и препятствуют протеканию электродных процессов.

При электрохимической защите с помощью внешнего электрического тока, который проходит через металл, сдвигается потенциал металла и, тем самым, изменяться скорость его коррозии.

В зависимости от сдвига потенциала электрохимическая защита может быть катодной и анодной. Эти способы применяют для защиты буровых платформ, сварных металлических оснований, трубопроводов, проходящих под землей, а также защищают подводные части морских судов.

Пленочная защита

Для того чтобы защитить металлические изделия от коррозии, можно нанести защитное покрытие. В качестве покрытия можно использовать лаки, краски, эмали, пластмассы и др.

Лакокрасочные покрытия легко наносятся, недорогие по стоимости, обладают водоотталкивающими свойствами, не вступают в химическую реакцию с металлом, хорошо заполняют поры и трещины. Они служат для защиты металлов от компонентов внешней среды, вызывающих коррозионные процессы.

Если правильно подобрать лакокрасочные материалы и соблюдать технологию их нанесения, то они могут прослужить в качестве покрытия до 5 лет.

Часто под лакокрасочное покрытие наносится грунтовка, проходя через которую, вода растворяет некоторые пигменты и становится не такой корррозионноактивной. Вместо грунтовки может проводится фосфатирование поверхности. Они наносятся кистью или распылителем. Для стальных изделий большинство таких препаратов состоит из смесей фосфатов марганца и железа.

Защитить металлическое изделие можно путем нанесения слоя металла, который более коррозионностойкий. В этом случае коррозия разрушает само покрытие. Такими металлами является хром, никель, цинк. Например, железо покрывается хромом.

Человечество за десятки сотен лет возвело вокруг себя большое множество техники. Но стартом для такого широкого развития послужила эпоха, когда люди научились добывать и обрабатывать металл. Благодаря его свойствам стало возможным достигать больших вершин в технике, строить транспортные средства, которые могли доставлять человека на другой конец мира, оружие, чтобы защищается. Но сейчас техника дошла до такого уровня, что одни механизмы создают другие.

Несмотря на то, что в центре всей (или почти всей) техники находится металл, это не самый совершенный материал. С течением времени и влияния на него окружающей средой, он поддается ржавлению. Это явление наносит большей вред данному материалу, и как следствие – ухудшает работу техники, что часто может привести к аварии или катастрофе. В этой статье будет указано все о ржавеющей стали, как происходит этот процесс, и что делать, чтобы его избежать (или устранить).

Что такое ржавчина?

«Ржавчина» – так называют любые виды разрушения этого материала в быту. Если говорить конкретно, то это те покраснения, которые образовываются на металле после реакции с кислородом. Окисление пагубно влияет на этот материал, делая его хрупким, грани – рыхлыми, и уменьшают его твердость, как и эксплуатационные характеристики.

Поэтому на многих заводах используют разные составы для уменьшения трения, защиты от коррозии и других негативных воздействий окружающей среды. Об этом немного позже. Чтобы перейти к защите от такого воздействия, нежно разобраться с тем, как «гниение» влияет на сталь, и как убивает ее кристаллическую решетку.

Природное разрушение может наносить самые разные повреждения:

  • Полное повреждение;
  • Нарушение плотности кристаллической решетки;
  • Избирательное повреждение;
  • Подповерхностное.

В зависимости от характера повреждении, могут принимается разные методы борьбы с коррозией. Каждый из возможных повреждений вредит по-своему, и неприемлем в различных направлениях техники и производства. В энергетике подобные разрушения непозволительна вообще (это может привести к утечкам газа, распространению радиации, и так далее).

Видео ролик о том, что такое ржавчина и как от нее защищаться:

Воздействие ржавчины

Чтобы эффективно подбирать механизмы противодействия разрушению структуры металла, необходимо понять, как действует само ржавление. Она может быть двух видов: химической и электрохимической.

К первой – химической – можно отнести процесс того, как грань образца уничтожается просто под воздействием окружающей среды (газами чаще всего). Такая ржавчина на металле образуется за очень долгое время, и как правило, ее весьма легко избежать. Деталь необходимо чистить и наносить антикоррозионные покрытия (краски, лаки и так далее).

Кроем этого, такой процесс порчи железа возникает в влажных, мокрых средах, а также при контакте с органическими веществами, типа нефти, например. Последний случай особенно важно учитывать, так как ржавчина на нефтяных вышках недопустима.

Электрохимическая коррозия более редкая, и происходит в электролитах. Только в данном случае важна не среда, а ток, который производится в результате электризации. Именно он и разрушает металл и его поверхность (по большей части). Поэтому отличить ее можно легко по рассыпчатой поверхности металла.

Чтобы защитить металл от ржавчины нужно учитывать все эти особенности.

Как создать правильную защиту?

Коррозия металлов и способы защиты тесно связаны между собой. Поэтому все процессы защиты можно разделить на всего лишь две группы: улучшение металла во время производства, и нанесение защиты в процессе эксплуатации. К первому можно отнести изменения химического состава, который сделает деталь более стойкой к окружающему влиянию. Такую технику или предметы не нужно дополнительно защищать.

Ко второй же группе защити можно отнести различные покрытия и изоляции рабочего процесса. Избежать разрушения можно несколькими способами: избежать среды, которая ее провоцирует, или добавить что-то, что поможет избавится от распространения порчи металла, вне зависимости от среды и окружения. В домашних условиях возможен только второй вариант, так как повлиять уже готовое изделие человек без специального оборудования, печи и прочего, просто не может.

Как подготовится к воздействию ржавчины

Во время создания металлических изделий, есть два способа, как убрать коррозию или свести к минимуму ее появление. Для этого в структуру либо добавляют вещества (цинк, медь и так далее), которые стойкие к воздействию газов и других негативных раздражителей. Также часто можно встретить обратный эффект.

Как уже упоминалось, есть такой тип коррозии, как избирательный. Он разрушает определенные элементы в складе элементов. Как известно, металл состоит из разных атомов, которые образуют элементы, каждый из которых в разной степени поддается негативным воздействиям. Например, в железе это сера. Чтобы деталь из этого материала служила как можно дольше, из ее химического состава удаляется сера, из которой начинается избирательное разъединение структуры. В домашних условиях такой надежный способ невозможен.

Еще одна антикоррозионная защита может быть при производстве. При производстве наносятся специальные покрытия, которые будут защищать поверхность от внешних повреждений от химической реакции. Конструкционные материалы, которые используются при этом, могут быть только на производстве, так как в общем доступе их приобрести почти нельзя. К тому же, такое нанесение часто производится на автоматических линиях, что повышает надежность и скорость покрытия материала.

Но как бы металл не усовершенствовался, этот материал все равно будет поддаваться негативному давлению со стороны влажности, воздуха, разных газов и в процессе эксплуатации будет портится. Поэтому необходима антикоррозионная защита, которая будет не только влиять на него, но и защищать его от внешнего мира.

Очень сильно на распространение ржавчины влияет кислород. Защита металлов от коррозии также является замедление, а не только предотвращение, распространения такого негативного явления. Для этого в структуру окружающей среды вводятся специальные молекулы – ингибиторы – которые, приникая в поверхность металла, обеспечивают своего рода щит для него.

Также часто используется антикоррозийная пленка, которая может наносится разными способами. Но проще всего (и надежнее), когда ее наносят путем распыления. Используют для этого различные полимерные материалы, краски, эмали и подобное. Они также обволакивают деталь, и ограничивают к нему доступ разрушительной среды. Борьба с коррозией металла может быть самой разнообразной, несмотря на схожесть в процессе. Этот химический процесс неизбежен, и практически всегда достигает цели. Поэтому так много усилий и уходит на то, чтобы предотвратить коррозию. Способы защиты в виду этого могут комбинироваться.

Это основные методы защиты. Они популярны из-за простоты, надежности и удобства. К ним также можно отнести покрытие лаками и эмалями, но про это немного ниже.

Так, например, перед нанесением краски или эмали, работники смазывают изделие грунтовкой, чтобы краска лучше «легла» на поверхность, и между ней и изделием не осталось влаги (которую грунтовка вбирает). Эти методы защиты металлов от коррозии не всегда делаются на производстве. Домашних инструментов вполне хватит, чтобы сделать такие операции самостоятельно.

Антикоррозионная защита порой бывает весьма необычной. Например, когда один металл защищен другим. К такому приему часто прибегают, когда химический сплав нельзя изменить. Его поверхность покрывается другим материалом, который переполнен вкраплениями элементов, неподдающихся коррозийным воздействиям. Это так называемым антикоррозийный слой помогает очень надежно сохранить поверхность более чувствительного материала. К примеру, покрытие может быть из хрома.

К подобному относят и протекторную защиту металлов от коррозии. В данном случае защищаемая поверхность покрывается металлом, у которого низкая проводимость электричества (которое является одной из основных причин коррозии). Но это применяется тогда, когда контакт с окружающей средой сводится к минимуму. Поэтому подобная защита металлов от ржавчины и других опасных химических процессов, используется в комбинации, например, с ингибиторами.

Такие способы защиты применяются для того, чтобы избежать механических воздействий. То, как защитить металл надежнее всего – сказать сложно. Каждый метод может давать свои положительные результаты.

Как добиться качественного покрытия?

Не всегда защиты металла от коррозии ложится на плечи производителей. Часто заботиться о таком изделии нужно самостоятельно, и тогда лучшей схемой усовершенствования стойкости детали становится нанесение покрытия.

Первым делом, оно должно быть полностью чистым. К «грязи» можно отнести:

  • Остатки масла
  • Окислы

Устранять их нужно правильно и полностью. К примеру, нужно брать специальную жидкость на основе спирта или бензина, чтобы вода дополнительно не повредила структуру. К тому же, влажность на поверхности может остаться, и нанесенная поверх нее краска попросту не будет выполнять свои функции.

В замкнутой среде (между поверхностью и краской) коррозия железа будет развивается еще активнее, поэтому такая защита металла от коррозии скорее нанесет ему вред, чем поможет. Поэтому важно избегать также и влаги. После устранения грязи необходимо просушить его.

После этого можно наносить необходимое покрытие. Но все же это лучший способ защиты от ржавчины в домашних условиях. Хоть способы защиты от коррозии металлов могут быть разными, всегда нужно помнить, что неправильное их использование может привести к неприятностям. Поэтому не нужно придумывать что-то неординарное, лучше использовать уже проверенные и надежные методы защиты от коррозии металлов.

Также стоит отметить, что поверхность агрегата может быть обработана несколькими способами:

  • Химическими
  • Электрохимическим
  • Механическим

Последний является самым простым методом того, как остановить коррозию. Первые два пункта из списка представляют собой более сложные (в техническом плане) процессы, от чего антикоррозионная защита становится надежнее. Ведь они обезжиривают металл, что делает его более удобным для нанесения на него защитного покрытия. До покрытия должно пройти не более 6-7 часов, так как за это время контакт со средой «восстановит» предыдущий результат, который был до обработки.

Защита от коррозии должна производится – по большей части – на заводе и при производстве. Но не нужно полагаться только на нее. Домашнее средство от коррозии также не повредит.

Можно ли навсегда избавится от коррозии?

Несмотря на простоту ответа, он должен быть развернутым. Коррозию и защиту металлов от коррозии нельзя отделять друг от друга, так как в их основе лежит химический состав как самого изделия, так и его окружающей атмосферы. Не зря способы борьбы с коррозией основываются именно на этих показателях. Они либо убирают «слабые» частицы кристаллической решетки (либо добавляют в нее более надежные вкрапления), либо же помогают «спрятать» поверхность изделия от газов и воздействий извне.

Антикоррозионная защита не являет собой ничего хитрого. В ее основе простая химия, и законы физики, которые также указывают на то, избежать каких-либо процессов во взаимодействии элементов невозможно. Противокоррозионная защита уменьшает вероятность развития такого исхода, повышает долговечность металла, но все же – окончательно его не спасает. Какой бы ни была она, ее все равно нужно обновлять, улучшать и комбинировать, и использовать дополнительные способы защиты металлов от коррозии.

Сказать, как предотвратить коррозию можно, но вот стремится к тому, чтобы железо вообще было ей не подвластно – не стоит. Покрытие также поддается разрушительной силе окружающего мира, и, если за этим не следить, газы и влажность доберутся и до защищенной поверхности, который под ней прячется. Коррозия и защита металлов крайне необходима (как на производстве, так и в процессе эксплуатации), но к ней тоже нужно относится с умом.

Применение защиты от коррозии металлов — актуальный вопрос для многих.

Коррозия, по сути, является самопроизвольным процессом разрушения металлов, причиной которого является неблагоприятное воздействие окружающей среды, вследствие чего происходят химические, физико-химические процессы, приводящие к печальным последствиям.

Коррозия, воздействуя на металл, может полностью уничтожить его. Поэтому необходимо бороться с возникающей ржавчиной.

И не только в момент ее появления. Также важна профилактическая работа по предупреждению возникновения коррозии у металлов.

По своему типу различают следующие виды коррозии:

  • точечную;
  • сплошную;
  • сквозную;
  • пятнами или язвами;
  • послойную;
  • подповерхностную и другие.

Возникает коррозия не только под воздействием воды, но и почвы, технического масла. Как мы видим, виды коррозии представлены широко, а вот методы защиты не так многочисленны.

Антикоррозийные способы можно сгруппировать, опираясь на следующие методы:

  1. электрохимический метод — позволяет уменьшить разрушительный процесс на основе закона гальваники;
  2. уменьшение агрессивной реакции производственной среды;
  3. химическое сопротивление металла;
  4. защита поверхности металла от неблагоприятного воздействия окружающей среды.

Защиту поверхности и гальванический метод применяют уже в момент эксплуатации металлических конструкций и изделий.

К ним относятся следующие способы защиты: катодная, протекторная, а также ингибиторная.

Электрохимическая защита основана на действии электрического тока, под его постоянным воздействием коррозия прекращается.

Внедрение ингибиторов в агрессивную среду, которая соприкасается с металлом, позволяет снизить скорость коррозийных процессов.

Химическое сопротивление и защита поверхности относятся к пленочным способам сохранения. Они уже могут применяться как на стадии изготовления металлоизделий, так и в момент эксплуатации.

Выделяют следующие способы: лужение, оцинковку, покраску и прочее. Краска, как защитное покрытие от ржавчины — самый распространенный и используемый метод.

Протекторная антикоррозийная защита металлов

Основной принцип, который определяет протекторная защита — это перенос возникновения коррозии с основной металлоконструкции на заменитель.

То есть к защищаемому металлу присоединяют другой, обладающий отрицательным электрическим потенциалом. Протектор, находясь в рабочем состоянии, разрушается и заменяется на другой.

Актуальна протекторная защита для конструкций, длительное время находящихся в нейтральных средах: воде, земле, грунте.

В качестве протектора используют цинк, магний, железо, алюминий. Яркий пример, где используется протекторная защита — это морские суда, постоянно находящиеся в воде.

Ингибиторное средство

При помощи этого средства снижается агрессивное воздействие масла, кислот, других химических жидкостей. Используется в трубопроводах, металлических цистернах.

Представлен в виде средства, которое состоит из борной кислоты с диэтаноламином и растительного масла. Входит в состав дизельного топлива, авиационного керосина.

При помощи ингибитора металлы хорошо защищены от коррозии в таких средах как трансформаторные масла, нефтяные и содержащие сероводород массы.

Однако активная основа этого средства не растворима в среде минерального масла, тем самым не защищает металл от атмосферной коррозии.

Лакокрасочное покрытие металлов

Краска на сегодняшний день самый доступный и наиболее используемый антикоррозийный материал.

Лакокрасочное покрытие создает механический слой, который создает препятствие для воздействия агрессивной среды на металлоконструкцию или изделие.

Краска может использоваться как до возникновения ржавчины, так и на этапе коррозии.

Во втором случае, перед тем как нанести покрытие, обрабатываемую поверхность нужно подготовить: очистить возникшие коррозийные повреждения, произвести герметизацию трещин, только после этого наносится краска, образуя защитный слой.

При помощи этого средства защищают водопроводные трубы, металлические элементы жилых построек — перила, перегородки.

Еще один плюс этой защиты — краска может быть различна по цветовой гамме, следовательно, покрытие будет служить еще оформлением.

Совместное использование антикоррозийных способов защиты

Различные антикоррозийные методы защиты металла могут применяться совместно. Наиболее часто используется лакокрасочное покрытие и протектор.

Краска, сама по себе, достаточно непрактичный антикоррозийный материал, так как механические, водные, воздушные воздействия могут повредить ее слой.

Протектор обеспечит дополнительную защиту, если лакокрасочное покрытие будет нарушено.

Современная краска одновременно может являться протектором или ингибитором. Протекторная защита возникает, если краска в своем составе содержит порошковые металлы: алюминий, цинк, магний.

Эффект ингибитора достигается, если краска содержит ортофосфорную кислоту.

Защиту на производстве определяет СНиП

На производстве защита от коррозии — важный момент, так как ржавчина может привести не только к поломке, но и к катастрофе. СНиП 2.03.11 — 85 — это норма, которой должны руководствоваться на предприятиях, чтобы предотвратить неблагоприятные последствия.

Проведенная лабораторная работа позволила описать в СНиП виды коррозийных повреждений, источники возникновения коррозии, а также рекомендации по обеспечению нормальной эксплуатации металлоконструкций.

В соответствие со СНиП используют следующие методы защиты:

  • пропиткой (уплотняющего типа) материалами с повышенной химической стойкостью;
  • оклейкой пленочными материалами;
  • применением разнообразных лакокрасочных, мастичных, оксидных, металлизированных покрытий.

Таким образом, СНиП дает возможность применять все методы.

Однако, в зависимости от того, где находится конструкция, в какой среде (сильноагрессивной, средне, слабой или полностью неагрессивной) СНиП конкретизирует использование защитных средств, а также оговаривает их состав.

При этом СНиП выделяет еще другое деление сред на твердые, жидкие, газообразные, химические и биологически активные.

По сути СНиП для каждого строительного материала: алюминий, металл, сталь, железобетон и другие, предъявляет свои требования.

В домашних условиях к металлам, к сожалению, применимы не все способы защиты. Основным используемым методом остается покрытие изделия краской.

Остальные же способы используется на производстве.