Презентация на тему "закон сохранения импульса". Урок - презентация по физике: "Импульс

1 слайд

Закон сохранения импульса Проект подготовила ученица 10 класса Елагина М.В. Педагог: Васильева М.В. МОУ КСОШ №13 2012 год

2 слайд

Основополагающий вопрос: Как экспериментально можно проверить закон сохранения импульса?

3 слайд

Проблемные вопросы: Как изменяется импульс тела при взаимодействии? Где применяется закон сохранения импульса? Каково значение работ Циолковского для космонавтики?

4 слайд

Цели и задачи проекта: определить понятия: «упругий и неупругий удары»; на практическом и виртуальном примере рассмотреть, как выполняется закон сохранения импульса.

5 слайд

Рене Декарт (1596-1650), французский философ, математик, физик и физиолог. Высказал закон сохранения количества движения, определил понятие импульса силы.

6 слайд

Закон сохранения импульса Импульсом тела (количеством движения) называют меру механического движения, равную в классической теории произведению массы тела на его скорость. Импульс тела является векторной величиной, направленной так же, как и его скорость. Закон сохранения импульса служит основой для объяснения обширного круга явлений природы, применяется в различных науках.

7 слайд

Упругий удар Абсолютно упругий удар – столкновения тел, в результате которого их внутренние энергии остаются неизменными. При абсолютно упругом ударе сохраняется не только импульс, но и механическая энергия системы тел. Примеры: столкновение бильярдных шаров, атомных ядер и элементарных частиц. На рисунке показан абсолютно упругий центральный удар: В результате центрального упругого удара двух шаров одинаковой массы, они обмениваются скоростями: первый шар останавливается, второй приходит в движение со скоростью, равной скорости первого шара.

8 слайд

9 слайд

Неупругий удар Абсолютно неупругий удар: так называется столкновение двух тел, в результате которого они соединяются вместе и движутся дальше как одно целое. При неупругом ударе часть механической энергии взаимодействующих тел переходит во внутреннюю, импульс системы тел сохраняется. Примеры неупругого взаимодействия: столкновение слипающихся пластилиновых шаров, автосцепка вагонов и т.д. На рисунке показан абсолютно неупругий удар: После неупругого соударения два шара движутся как одно целое со скоростью, меньшей скорости первого шара до соударения.

10 слайд

11 слайд

12 слайд

Вычисления: А В С В результате поставленного эксперимента мы получили: mпистолета = 0,154 кг mснаряда = 0,04 кг АС = Lпистолета = 0,1 м Lснаряда = 1,2 м С помощью метромера мы определили время движения снаряда и пистолета, оно составило: t пистолета = 0,6 с tснаряда = 1,4 с Теперь определим скорость снаряда и пистолета во время выстрела по формуле: V= L/t Получили, что Vпистолета = 0,1:0,6 = 0,16 м/с Vснаряда = 1,2:1,4 = 0,86 м/с И наконец мы можем вычислить импульс двух этих тел по формуле: P=mV Получили: Рпистолета = 0,154 * 0,16 = 0,025 кг*м/с Рснаряда = 0,04 *0,86 = 0,034 кг*м/с mп*Vп = mс*Vс 0,025 = 0,034 разногласие получилось в связи с действием силы трения на снаряд и погрешностью приборов. 0,1 м 1,2 м снаряд пистолет

13 слайд

14 слайд

Примеры применения закона сохранения импульса Закон строго выполняется в явлениях отдачи при выстреле, явлении реактивного движения, взрывных явлениях и явлениях столкновения тел. Закон сохранения импульса применяют: при расчетах скоростей тел при взрывах и соударениях; при расчетах реактивных аппаратов; в военной промышленности при проектировании оружия; в технике - при забивании свай, ковке металлов и т.д.

15 слайд

Закон сохранения импульса лежит в основе реактивного движения. Большая заслуга в развитии теории реактивного движения принадлежит Константину Эдуардовичу Циолковскому. Основоположником теории космических полетов является выдающийся русский ученый Циолковский (1857 - 1935). Он дал общие основы теории реактивного движения, разработал основные принципы и схемы реактивных летательных аппаратов, доказал необходимость использования многоступенчатой ракеты для межпланетных полетов. Идеи Циолковского успешно осуществлены в СССР при постройке искусственных спутников Земли и космических кораблей.

16 слайд

Реактивное движение Движение тела, возникающее вследствие отделения от него части его массы с некоторой скоростью, называют реактивным. Все виды движения, кроме реактивного, невозможны без наличия внешних для данной системы сил, т. е. без взаимодействия тел данной системы с окружающей средой, а для осуществления реактивного движения не требуется взаимодействия тела с окружающей средой. Первоначально система покоится, т. е. ее полный импульс равен нулю. Когда из системы начинает выбрасываться с некоторой скоростью часть ее массы, то (так как полный импульс замкнутой системы по закону сохранения импульса должен оставаться неизменным) система получает скорость, направленную в противоположную сторону.

17 слайд

Выводы: При взаимодействии изменение импульса тела равно импульсу действующей на это тело силы При взаимодействии тел друг с другом изменение суммы их импульсов равно нулю. А если изменение некоторой величины равно нулю, то это означает, что эта величина сохраняется. Практическая и экспериментальная проверка закона прошла успешно и в очередной раз было установлено, что векторная сумма импульсов тел, составляющих замкнутую систему, не изменяется.

Стакан с водой находится на длинной полоске прочной бумаги. Если тянуть полоску медленно, то стакан движется вместе с бумагой. А если резко дернуть полоску бумаги - стакан остается неподвижный. Если мяч, летящий с большой скоростью, футболист может остановить ногой или головой, то вагон, движущийся по рельсам даже очень медленно, человек не остановит. Теннисный мяч, попадая в человека, вреда не причиняет, однако пуля, которая меньше по массе, но движется с большой скоростью (м/с), оказывается смертельно опасной.








У какого тела импульс больше: у спокойно идущего слона или летящей пули? (M >m, но V 1 m, но V 1 "> m, но V 1 "> m, но V 1 " title="У какого тела импульс больше: у спокойно идущего слона или летящей пули? (M >m, но V 1 "> title="У какого тела импульс больше: у спокойно идущего слона или летящей пули? (M >m, но V 1 ">












Шар Герона Герон Александрийский – греческий механик и математик. Одно из его изобретений носит название Шар Герона. В шар наливалась вода, которая нагревалась огнем. Вырывающийся из трубки пар вращал этот шар. Эта установка иллюстрирует реактивное движение.



1. Импульс силы в Международной системе единиц измеряется: A.1Н; В. 1м; С. 1 Дж; D. 1Н · с 2. Закон сохранения импульса справедлив для: А. замкнутой системы; В. любой системы 3. Если на тело не действует сила, то импульс тела: А. увеличивается; В. не изменяется; С. уменьшается 4.Что называют импульсом тела: А. величину, равную произведению массы тела на силу; В. величину, равную отношению массы тела к его скорости; С. величину, равную произведению массы тела на его скорость. 5. Что можно сказать о направлении вектора скорости и вектора импульса тела? А. направлены в противоположные стороны; В. перпендикулярны друг другу; С. их направления совпадают ОТВЕТ: 1D; 2А; 3В; 4С; 5С.

Слайд 1

Импульс. Закон сохранения импульса.

Урок физики в 10 классе

Учитель физики МОУ Николаевской сош Саушкина Т.А.

Слайд 2

Законы Ньютона выполняются в инерциальных системах отсчета Сила тяжести приложена к Земле Вес тела всегда направлен вниз Ускорение тела обратно пропорционально массе тела. Сила трения зависит от площади соприкасающихся поверхностей Сила – величина векторная Сила тяжести имеет электромагнитную природу Сила реакции опоры –это сила упругости

Задание с ключом Ответ: 10010101

Слайд 3

Импульс силы - сила - время

векторная физическая величина, являющаяся мерой действия силы за некоторый промежуток времени

Импульс силы

Слайд 4

Импульс тела

Импульс тела - масса - скорость тела

векторная физическая величина, являющаяся мерой механического движения

Слайд 5

Закон сохранения импульса

Векторная сумма (геометрическая) импульсов тел в замкнутой системе остается величиной постоянной

Закон можно применять: а) если равнодействующая внешних сил равна нулю; б) для проекции на какую-либо ось, если проекция равнодействующей на эту ось равна нулю

Слайд 6

Применение закона сохранения импульса

Слайд 7

Из истории реактивного движения

Первые пороховые фейерверочные и сигнальные ракеты были применены в Китае в 10 веке. В 18 веке при ведении боевых действий между Индией и Англией, а также в Русско-турецких войнах были использованы боевые ракеты.

Слайд 8

Живые ракеты

Реактивное движение, используемое ныне в самолетах, ракетах и космических снарядах, свойственно осьминогам, кальмарам, каракатицам, медузам – все они, без исключения, используют для плавания реакцию (отдачу) выбрасываемой струи воды.

Слайд 9

В мире растений

В южных странах (и у нас на побережье Черного моря тоже) произрастает растение под названием "бешеный огурец". Стреляет бешеный огурец (иначе его называют «дамский пистолет») более чем на 12 м.

Слайд 10

Известна старинная легенда о богаче с мешком золотых, который, оказавшись на абсолютно гладком льду озера, замерз, но не пожелал расстаться с богатством. А ведь он мог спастись, если бы не был так жаден! Достаточно было оттолкнуть от себя мешок с золотом, и богач сам заскользил бы по льду в противоположную сторону по закону сохранения импульса.

А как бы ты поступил на его месте?

Слайд 11

Готовимся к ЕГЭ

Слайд 12

Часть А. На горизонтальной поверхности находится тележка массой 20 кг, на которой стоит человек массой 60 кг. Человек начинает двигаться вдоль тележки с постоянной скоростью, тележка при этом начинает катиться без трения. Модуль скорости тележки относительно поверхности

больше модуля скорости человека относительно поверхности меньше модуля скорости человека относительно поверхности равен модулю скорости человека относительно поверхности может быть как больше, так и меньше модуля скорости человека относительно поверхности

Слайд 13

Часть А. Легковой автомобиль и грузовик движутся со скоростями 1= 108 км/ч и 2= 54 км/ч соответственно. Их массы соответственно = 1000 кг и = 3000 кг. На сколько импульс грузовика больше импульса легкового автомобиля?

на 15000 кгм/с на 45000 кгм/с на 30000 кгм/с на 60000 кгм/с

Слайд 14

Часть А. Два шарика одинаковой массой движутся с одинаковыми по модулю скоростями вдоль горизонтальной плоскости XY. Известно, что для системы тел, включающей оба шарика, проекция импульса на ось OY больше нуля, а модуль проекции импульса на ось OX больше модуля проекции импульса на ось OY. В этом случае направление скорости второго шарика должно совпадать с направлением, обозначенным цифрой 1 2 3 4

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Импульс. Закон сохранения импульса. Презентация выполнена Учителем физики ГБОУ СОШ № 507 Павлюк А.И Санкт-Петербург 2011г

О неизменности в мире … «Я принимаю, что во Вселенной … есть известное количество движения, которое никогда не увеличивается, не уменьшается, таким образом, если одно тело приводит в движение другое, то теряет столько своего движения, сколько его сообщает». В XVII веке впервые были указаны величины, сохраняющиеся в тех или иных явлениях.

Импульс. Закон сохранения импульса. Импульс тела. Импульс силы. Закон сохранения импульса. Применение закона сохранения импульса – реактивное движение.

Объясните явления…

Второй закон Ньютона F=ma a = v- v 0 / t Ft = mv - mv 0 p = m v - импульс тела p = кг м/с СИ Ft - импульс силы. mv - mv 0 – изменение им пульса тела

Второй закон Ньютона в импульсной форме: Импульс силы равен изменению импульса тела. Импульс - векторная величина. Он всегда совпадает по направлению с вектором скорости.

Если два или несколько тел взаимодействуют только между собой (не подвергаются воздействию внешних сил), то эти тела образуют замкнутую систему. Импульс каждого из тел, входящих в замкнутую систему может меняться в результате их взаимодействия друг с другом. Для описания существует очень важный закон – закон сохранения импульса.

Закон сохранения им пульса: Векторная сумма импульсов замкнутой системы тел не изменяется.

Абсолютно упругий удар - модель соударения, при которой полная кинетическая энергия системы сохраняется 1.одинаковые тела обмениваются проекциями скорости на линию, соединяющую их центры. 2. скорости тел различной массы зависят от соотношения масс тел.

Для математического описания простейших абсолютно упругих ударов, используется: закон сохранения импульса закон сохранения энергии абсолютно упругий удар тел не равных масс Импульсы складываются векторно, а энергии скалярно! абсолютно упругий удар тел равных масс

Центральный абсолютно упругий удар Когда оба шара имеют одинаковые массы (m 1 = m 2), первый шар после соударения останавливается (v 1 = 0), а второй движется со скоростью v 2 = v 1 , т. е. шары обмениваются скоростями (импульсами) Центральным ударом шаров называют соударение, при котором скорости шаров до и после удара направлены по линии центров.

После нецентрального упругого соударения шары разлетаются под некоторым углом друг к другу Если массы шаров одинаковы, то векторы скоростей шаров после нецентрального упругого соударения всегда направлены перпендикулярно друг к другу

Абсолютно неупругий удар - удар, в результате которого компоненты скоростей тел становятся равными При абсолютно неупругом ударе, выполняется закон сохранения импульса, но не выполняется закон сохранения механической энергии (часть кинетической энергии соудареямых тел, в результате неупругих деформаций переходит в тепловую)

Реактивное движение Реактивное движение - это движение, которое возникает при отделении от тела некоторой его части с определенной скоростью. Особенностью этого движения является то, что тело может ускоряться и тормозить без какой-либо внешней взаимодействия с другими телами.

Реактивное движение, например, выполняет ракета. Продукты сгорания при вылете получают относительно ракеты некоторую скорость. Согласно закону сохранения импульса, сама ракета получает такой же импульс, как и газ, но направленый в другую сторону. Закон сохранения импульса нужен для расчета скорости ракеты.

ЗАДАЧА: До запуска ракеты M р υ р =0 , m г υ г =0 После запуска С какой скоростью будет двигаться ракета, если средняя скорость выхлопных газов 1 км/с, а масса горючего составляет 80% от всей массы ракеты? м р υ р m г υ г

Реактивное движение в живой природе: Реактивное движение присуще медузам, кальмарам, осьминогам и другим живым организмам.

Реактивное движение можно обнаружить и в мире растений. В ю жных странах и на нашем побережье Черного моря произрастает растение под названием «бешеный огурец» . При созревании семян внутри плода создается высокое давление в результате чего плод отделяется от подложки, а семена с большой силой выбрасываются наружу. Сами огурцы при этом отлетают в противоположном направлении. Стреляет «бешеный огурец» более чем на 12 метров.

В технике реактивно движение встречается на речном транспорте (катер с водометным двигателем), в авиации, космонавтике, военном деле.

Легкий шар движущийся со скоростью 10 м/с, налетает на покоящийся тяжелый шар и между шарами происходит абсолютно упругий удар. После удара шары разлетаются в противоположные стороны с одинаковыми скоростями. Во сколько раз различаются массы шаров Решение:

Брусок массой 600 г, движущийся со скоростью 2 м/с, сталкивается с неподвижным бруском массой 200 г. Определите изменение кинетической энергии первого бруска после столкновения. Удар считать центральным и абсолютно упругим. Решение:

Два шарика массы которых соответственно 200 г и 600 г, висят, соприкасаясь, на одинаковых вертикальных нитях длиной 80 см. Первый шар отклонили на угол 90° и отпустили. Каким будет отношение кинетических энергий тяжелого и легкого шариков тотчас после их абсолютно упругого центрального удара. Решение:

Шарик массой 100 г, летящий горизонтально со скоростью 5 м/с, абсолютно упруго ударяется о неподвижный шар массой 400 г, висящий на нити длиной 40 см. Удар центральный. На какой угол отклонится шар, подвешенный на нити после удара Решение.


«Механическое движение тел» - Когда? Периодическое движение. Механическое движение. Периодическое движение – движение, повторяющееся через равные промежутки времени. Кинематика периодического движения. Ответ. Равномерное движение по окружности. Находилось тело). Вопрос №1. Кинематика. Виды механического движения.

«Космическая скорость» - Траектория движения тел движущихся с малой скоростью. Движение тел с первой космической скоростью. Прошел мимо больших планет. Первый полет человека в космос. Период обращения 96 мин. Первый искусственный спутник Земли запущен 4 октября 1957 года Масса 83,60 кг. 12 апреля 1961г. V1. На борту «Вояджер-2» диск с научной информацией.

«Инерция тела» - Опыт 4. Тележки разной массы Почему скорость меняется по разному? Запуск самолета с палубы корабля. Скорость тела не может измениться сама по себе! Инерция тел. Ограничения на движение по инерции – трение, сопротивление среды. Инерция. Инертность – «ленивость». Опыт 2. «Монета». Из истории… Катапульта.

«Прямолинейное равноускоренное движение» - 10. a. 4. Тема урока: Прямолинейное равноускоренное движение. Перемещение. 1. Скорость. Равноускоренное движение ….за любые равные … 2. Как можно определить скорость при равномерном прямолинейном движении? Скорость и ускорение совпадают по направлению. 8.

«Импульс тела» - Умножим правую и левую части равенства на время взаимодействия. Преобразуем данное выражение. Импульс силы. Примеры реактивного движения можно обнаружить и в мире растений. Для демонстрации закона сохранения импульса тела рассмотрим опыт. Рассмотрим реактивное движение с помощью закона сохранения импульса.

«Опора и движение» - Скелет – опора тела. Спать на жесткой постели с невысокой подушкой. 1 головной мозг 2 Сердце 3 Язык 4 Уши. Правильно сидеть за столом, партой, на стуле, не горбиться. Посоветуйтесь и окажите первую помощь больному. Спина ровная. Вы – врачи первой медицинской помощи. Правильная поза при ходьбе. От чего портится осанка?

Всего в теме 10 презентаций