Как построить электронные формулы химических элементов. Электронная конфигурация атома

Алгоритм составления электронной формулы элемента:

1. Определите число электронов в атоме используя Периодическую таблицу химических элементов Д.И. Менделеева .

2. По номеру периода, в котором расположен элемент, определите число энергетических уровней; число электронов на последнем электронном уровне соответствует номеру группы.

3. Уровни разбить на подуровни и орбитали и заполнить их электронами в соответствии с правилами заполнения орбиталей :

Необходимо помнить, что на первом уровне находится максимум 2 электрона 1s 2 , на втором - максимум 8 (два s и шесть р: 2s 2 2p 6 ), на третьем - максимум 18 (два s , шесть p , и десять d: 3s 2 3p 6 3d 10 ).

  • Главное квантовое число n должно быть минимально.
  • Первым заполняется s- подуровень, затем р-, d- b f- подуровни.
  • Электроны заполняют орбитали в порядке возрастания энергии орбиталей (правило Клечковского).
  • В пределах подуровня электроны сначала по одному занимают свободные орбитали, и только после этого образуют пары (правило Хунда).
  • На одной орбитали не может быть больше двух электронов (принцип Паули).

Примеры.

1. Составим электронную формулу азота. В периодической таблице азот находится под №7.

2. Составим электронную формулу аргона. В периодической таблице аргон находится под №18.

1s 2 2s 2 2p 6 3s 2 3p 6 .

3. Составим электронную формулу хрома. В периодической таблице хром находится под №24.

1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 5

Энергетическая диаграмма цинка.

4. Составим электронную формулу цинка. В периодической таблице цинк находится под №30.

1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10

Обратим внимание, что часть электронной формулы, а именно 1s 2 2s 2 2p 6 3s 2 3p 6 - это электронная формула аргона.

Электронную формулу цинка можно представить в виде.

Дабы обучиться составлять электронно-графические формулы, значимо осознать теорию строения ядерного ядра. Ядро атома составляют протоны и нейтроны. Вокруг ядра атома на электронных орбиталях находятся электроны.

Вам понадобится

  • – ручка;
  • – бумага для записей;
  • – периодическая система элементов (таблица Менделеева).

Инструкция

1. Электроны в атоме занимают свободные орбитали в последовательности, называемой шкалой энергии:1s / 2s, 2p / 3s, 3p / 4s, 3d, 4p / 5s, 4d, 5p / 6s, 4d, 5d, 6p / 7s, 5f, 6d, 7p. На одной орбитали могут располагаться два электрона с противоположными спинами – направлениями вращения.

2. Конструкцию электронных оболочек выражают с поддержкой графических электронных формул. Для записи формулы используйте матрицу. В одной ячейке могут располагаться один либо два электрона с противоположными спинами. Электроны изображаются стрелками. Матрица наглядно показывает, что на s-орбитали могут располагаться два электрона, на p-орбитали – 6, на d – 10, на f -14.

3. Разглядите правило составления электронно-графической формулы на примере марганца. Обнаружьте марганец в таблице Менделеева. Его порядковый номер 25, значит в атоме 25 электронов, это элемент четвертого периода.

4. Запишите порядковый номер и символ элемента рядом с матрицей. В соответствии со шкалой энергии заполоните ступенчато 1s, 2s, 2p, 3s, 3p, 4s ярусы, вписав по два электрона в ячейку. Получится 2+2+6+2+6+2=20 электронов. Эти ярусы заполнены всецело.

5. У вас осталось еще пять электронов и незаполненный 3d-ярус. Расположите электроны в ячейках d-подуровня, начиная слева. Электроны с идентичными спинами расположите в ячейках вначале по одному. Если все ячейки заполнены, начиная слева, добавьте по второму электрону с противоположным спином. У марганца пять d-электронов, расположенных по одному в всей ячейке.

6. Электронно-графические формулы наглядно показывают число неспаренных электронов, которые определяют валентность.

При создании теоретических и фактических работ по математике, физике, химии студент либо школьник сталкивается с необходимостью вставки особых символов и трудных формул. Располагая приложением Word из офисного пакета Microsoft, дозволено набрать электронную формулу всякий трудности.

Инструкция

1. Откройте новейший документ в Microsoft Word. Присвойте ему наименование и сбережете в той же папке, где у вас лежит работа, дабы в грядущем не искать.

2. Перейдите на вкладку «Вставка». Справа обнаружьте символ?, а рядом надпись «Формула». Нажмите на стрелочку. Появится окно, в котором вы можете предпочесть встроенную формулу, скажем, формулу квадратного уравнения.

3. Нажмите на стрелку и на верхней панели появятся самые различные символы, которые вам могут потребоваться при написании определенно этой формулы. Изменив ее так, как надобно вам, вы можете сберечь ее. С этого момента она будет выпадать в списке встроенных формул.

4. Если вам необходимо перенести формулу в текст, тот, что позднее надобно поместить на сайте, то кликните на энергичном поле с ней правой кнопкой мыши и выберите не высокопрофессиональный, а линейный метод написания. В частности, формула все того же квадратного уравнения в данном случае примет вид:x=(-b±?(b^2-4ac))/2a.

5. Иной вариант написания электронной формулы в Word – через конструктор. Зажмите единовременно клавиши Alt и =. У вас сразу появится поле для написания формулы, а в верхней панели откроется конструктор. Тут вы можете предпочесть все знаки, которые могут потребоваться для записи уравнения и решения всякий задачи.

6. Некоторые символы линейной записи могут быть неясными читателю, неизвестному с компьютерной символикой. В этом случае самые трудные формулы либо уравнения имеет толк сберечь в графическом виде. Для этого откройте самый легкой графический редактор Paint: «Пуск» – «Программы» – «Paint». После этого увеличьте масштаб документа с формулой так, дабы она заняла каждый экран. Это нужно, дабы сохраненное изображение имело наибольшее разрешение. Нажмите на клавиатуре PrtScr, перейдите в Paint и нажмите Ctrl+V.

7. Обрежьте все лишнее. В результате у вас получится добротное изображение с необходимой формулой.

Видео по теме

Обратите внимание!
Помните, что химия – наука исключений. У атомов побочных подгрупп Периодической системы встречается «проскок» электрона. Скажем, у хрома с порядковым номером 24 один из электронов с 4s-яруса переходит в ячейку d-яруса. Схожий результат есть у молибдена, ниобия и др. Помимо того, есть представление возбужденного состояния атома, когда спаренные электроны распариваются и переходят на соседние орбитали. Следственно при составлении электронно-графических формул элементов пятого и последующих периодов побочной подгруппы сверяйтесь со справочником.

При написании электронных формул атомов элементов указывают энергетические уровни (значения главного квантового числа n в виде цифр – 1, 2, 3 и т.д.), энергетические подуровни (значения орбитального квантового числа l в виде букв – s , p , d , f ) и цифрой вверху указывают число электронов на данном подуровне.

Первым элементом в таблице Д.И. Менделеева является водород, следовательно, заряд ядра атома Н равен 1, в атоме только один электрон на s -подуровне первого уровня. Поэтому электронная формула атома водорода имеет вид:


Вторым элементом является гелий, в его атоме два электрона, поэтому электронная формула атома гелия – 2 Не 1s 2 . Первый период включает в себя только два элемента, так как заполняется электронами первый энергетический уровень, который могут занять только 2 электрона.

Третий по порядку элемент – литий – находится уже во втором периоде, следовательно, у него начинает заполняться электронами второй энергетический уровень (об этом мы говорили выше). Заполнение электронами второго уровня начинается с s -подуровня, поэтому электронная формула атома лития – 3 Li 1s 2 2s 1 . В атоме бериллия завершается заполнение электронами s -подуровня: 4 Ве 1s 2 2s 2 .

У последующих элементов 2-го периода продолжает заполняться электронами второй энергетический уровень, только теперь электронами заполняется р -подуровень: 5 В 1s 2 2s 2 2р 1 ; 6 С 1s 2 2s 2 2р 2 … 10 Ne 1s 2 2s 2 2р 6 .

У атома неона завершается заполнение электронами р -подуровня, этим элементом заканчивается второй период, в нем восемь электронов, так как на s - и р -подуровнях могут находиться только восемь электронов.

У элементов 3-го периода имеет место аналогичная последовательность заполнения электронами энергетических подуровней третьего уровня. Электронные формулы атомов некоторых элементов этого периода имеют вид:

11 Na 1s 2 2s 2 2р 6 3s 1 ; 12 Mg 1s 2 2s 2 2р 6 3s 2 ; 13 Al 1s 2 2s 2 2р 6 3s 2 3p 1 ;

14 Si 1s 2 2s 2 2р 6 3s 2 3p 2 ;…; 18 Ar 1s 2 2s 2 2р 6 3s 2 3p 6 .

Третий период, как и второй, заканчивается элементом (аргоном), у которого завершается заполнение электронами р –подуровня, хотя третий уровень включает в себя три подуровня (s , р , d ). Согласно приведенному выше порядку заполнения энергетических подуровней в соответствии с правилами Клечковского, энергия подуровня 3d больше энергии подуровня 4s , поэтому у следующего за аргоном атома калия и стоящего за ним атома кальция заполняется электронами 3s –подуровень четвертого уровня:

19 К 1s 2 2s 2 2р 6 3s 2 3p 6 4s 1 ; 20 Са 1s 2 2s 2 2р 6 3s 2 3p 6 4s 2 .

Начиная с 21-го элемента – скандия, в атомах элементов начинает заполняться электронами подуровень 3d . Электронные формулы атомов этих элементов имеют вид:


21 Sc 1s 2 2s 2 2р 6 3s 2 3p 6 4s 2 3d 1 ; 22 Ti 1s 2 2s 2 2р 6 3s 2 3p 6 4s 2 3d 2 .

В атомах 24-го элемента (хрома) и 29-го элемента (меди) наблюдается явление, называемое «проскоком» или «провалом» электрона: электрон с внешнего 4s –подуровня «проваливается» на 3d –подуровень, завершая заполнение его наполовину (у хрома) или полностью (у меди), что способствует бóльшей устойчивости атома:

24 Cr 1s 2 2s 2 2р 6 3s 2 3p 6 4s 1 3d 5 (вместо …4s 2 3d 4) и

29 Cu 1s 2 2s 2 2р 6 3s 2 3p 6 4s 1 3d 10 (вместо …4s 2 3d 9).

Начиная с 31-го элемента – галлия, продолжается заполнение электронами 4-го уровня, теперь – р –подуровня:

31 Ga 1s 2 2s 2 2р 6 3s 2 3p 6 4s 2 3d 10 4p 1 …; 36 Кr 1s 2 2s 2 2р 6 3s 2 3p 6 4s 2 3d 10 4p 6 .

Этим элементом и завершается четвертый период, который включает в себя уже 18 элементов.

Аналогичный порядок заполнения электронами энергетических подуровней имеет место в атомах элементов 5-го периода. У первых двух (рубидия и стронция) заполняется s –подуровень 5-го уровня, у последующих десяти элементов (с иттрия по кадмий) заполняется d –подуровень 4-го уровня; завершают период шесть элементов (с индия по ксенон), в атомах которых происходит заполнение электронами р –подуровня внешнего, пятого уровня. В периоде тоже 18 элементов.

У элементов шестого периода такой порядок заполнения нарушается. В начале периода, как обычно, находятся два элемента, в атомах которых заполняется электронами s –подуровень внешнего, шестого, уровня. У следующего за ними элемента – лантана – начинает заполняться электронами d –подуровень предыдущего уровня, т.е. 5d . На этом заполнение электронами 5d -подуровня прекращается и у следующих 14 элементов – с церия по лютеций – начинает заполняться f -подуровень 4-го уровня. Эти элементы включены все в одну клетку таблицы, а внизу приведен развернутый ряд этих элементов, называемых лантаноидами.

Начиная с 72-го элемента – гафния – по 80-й элемент – ртуть, продолжается заполнение электронами 5d –подуровня, и завершается период, как обычно шестью элементами (с таллия по радон), в атомах которых заполняется электронами р –подуровень внешнего, шестого, уровня. Это самый большой период, включающий в себя 32 элемента.

В атомах элементов седьмого, незавершенного, периода просматривается тот же порядок заполнения подуровней, что описан выше. Предоставляем студентам самим написать электронные формулы атомов элементов 5 – 7-го периодов с учетом всего сказанного выше.

Примечание: в некоторых учебных пособиях допускается другой порядок записи электронных формул атомов элементов: не в порядке их заполнения, а в соответствии с приводимым в таблице количеством электронов на каждом энергетическом уровне. Например, электронная формула атома мышьяка может иметь вид: As 1s 2 2s 2 2р 6 3s 2 3p 6 3d 10 4s 2 4p 3 .

Атом – электронейтральная система, состоящая из положительно заряженного ядра и отрицательно заряженных электронов. Электроны располагаются в атоме, образуя энергетические уровни и подуровни.

Электронная формула атома – это распределение электронов в атоме по энергетическим уровням и подуровням в соответствии с принципом наименьшей энергии (Клечковского), принципом Паули, правилом Гунда.

Состояние электрона в атоме описывается с помощью квантово-механической модели – электронного облака, плотность соответствующих участков которого пропорциональна вероятности нахождения электрона. Обычно под электронным облаком понимают область околоядерного пространства, которая охватывает примерно 90% электронного облака. Эта область пространства называется также орбиталью.

Атомные орбитали образуют энергетический подуровень. Орбиталям и подуровням присвоены буквенные обозначения. Каждый подуровень имеет определенное число атомных орбиталей. Если атомную орбиталь изобразить в виде магнитно-квантовой ячейки, то атомные орбитали, находящиеся на подуровнях, можно представить следующим образом:

На каждой атомной орбитали могут находиться одновременно не более двух электронов, различающихся спином (принцип Паули). Это различие обозначается стрелками ¯­. Зная, что на s -подуровне одна s -орбиталь, на р -подуровне три р -орбитали, на d -подуровне пять d -орбиталей, на f -подуровне семь f- орбиталей, можно найти максимальное количество электронов на каждом подуровне и уровне. Так, на s -подуровне, начиная с первого энергетического уровня, 2 электрона; на р -подуровне, начиная со второго энергетического уровня, 6 электронов; на d -подуровне, начиная с третьего энергетического уровня, 10 электронов; на f -подуровне, начиная с четвертого энергетического уровня, 14 электронов. Электроны на s-, p-, d-, f- подуровнях называются соответственно s-, р-, d-, f -электронами.

Согласно принципу наименьшей энергии , последовательное заполнение энергетических подуровней электронами происходит таким образом, что каждый электрон в атоме занимает подуровень с наиболее низкой энергией, отвечающей его прочной связи с ядром. Изменение энергии подуровней может быть представлено в виде ряда Клечковского или шкалы энергии:



1s <2s <2p <3s <3p <4s <3d <4p <5s <4d <5p <6s <4f <5d <6p <7s <5f <6d <7p ...

Согласно правилу Гунда, каждая квантовая ячейка (орбиталь) энергетического подуровня сначала заполняется одиночными электронами с одинаковым спином, а затем – вторым электроном с противоположным спином. Два электрона с противоположным спином, находящиеся на одной атомной орбитали, называют спаренными. Одиночные электроны – неспаренные.

Пример 1. Разместите 7 электронов на d -подуровне с учётом правила Гунда.

Решение. На d -подуровне – пять атомных орбиталей. Энергия орбиталей, находящихся на одном и том же подуровне, одинаковая. Тогда d -подуровень можно представить так: d . После заполнения электронами атомных орбиталей с учётом правила Гунда d -подуровень будет иметь вид .

Используя теперь представления о принципах наименьшей энергии и Паули, распределим электроны в атомах по энергетическим уровням (табл. 1).

Таблица 1

Распределение электронов по энергетическим уровням атомов

Используя данную схему, можно объяснить формирование электронных структур атомов элементов периодической системы, записанных в виде электронных формул. Общее число электронов в атоме определяется порядковым номером элемента.

Так, в атомах элементов первого периода будет заполняться электронами одна s -орбиталь первого энергетического уровня (табл. 1). Так как на этом уровне два электрона, то в первом периоде только два элемента (1 H и 2 He), электронные формулы которых следующие: 1 H 1s 1 и 2 Не 1s 2 .

В атомах элементов второго периодапервый энергетический уровень полностью заполнен электронами. Последовательно будут заполняться электронами s - и р -подуровни второго энергетического уровня. Сумма s - и р -электронов, заполнивших этот уровень, равна восьми, поэтому во втором периоде 8 элементов (3 Li… 10 nе).

В атомах элементов третьего периода первый и второй энергетические уровни полностью заполнены электронами. Последовательно будут заполняться s - и р -подуровни третьего энергетического уровня. Сумма s - и р -электронов, заполнивших третий энергетический уровень, равна восьми. Поэтому в третьем периоде 8 элементов (11 Na… 18 Аr).

В атомах элементов четвертого периода заполнены первый, второй и третий 3s 2 3р 6 энергетические уровни. На третьем энергетическом уровне свободным остается d -подуровень (3d ). Заполнение этого подуровня электронами от одного до десяти начинается после того, как заполнится максимально электронами 4s -подуровень. Далее размещение электронов происходит на 4р -подуровне. Сумма 4s -, 3d - и 4р-электронов равна восемнадцати, что соответствует 18 элементам четвертого периода(19 К… 36 Кr).

Аналогично происходит формирование электроных структур атомов элементов пятого периода с той лишь разницей, что s - и р -подуровни находятся на пятом, а d -подуровень на четвертом энергетическом уровнях. Так как сумма 5s -, 4d - и 5р -электронов равна восемнадцати, то в пятом периоде 18 элементов (37 Rb… 54 Xе).

В сверхбольшом шестом периоде 32 элемента (55 Cs… 86 Rn). Это число соответствует сумме электронов на 6s -, 4f -, 5d - и 6р -подуровнях. Последовательность заполнения подуровней электронами такова. Сначала заполняется электронами 6s -подуровень. Затем, вопреки ряду Клечковского, заполнится одним электроном 5d -подуровень. После этого максимально заполнится 4f -подуровень. Далее будут заполняться 5d - и 6р -подуровни. Предыдущие энергетические уровни заполнены электронами.

Аналогичное явление наблюдается при формировании электронных структур атомов элементов седьмого периода.

Таким образом, чтобы написать электронную формулу атома элемента необходимо знать следующее.

1. Порядковый номер элемента в периодической системе элементов Д.И. Менделеева, соответствующий общему числу электронов в атоме.

2. Номер периода, который определяет общее число энергетических уровней в атоме. При этом номер последнего энергетического уровня в атоме соответствует номеру периода, в котором находится элемент. В атомах элементов второго и третьего периодов заполнение электронами последнего энергетического уровня происходит в такой последовательности: ns 1–2 … 1–6 . В атомах элементов третьего и четвертого периодов подуровни последнего и предпоследнего энергетических уровней заполняются электронами так: ns 1–2 …(n –1)d 1–10 … 1–6 . В атомах элементов шестого и седьмого периодов последовательность заполнения электронами подуровней такая: ns 1–2 …(n –1)d 1 …(n -2)f 1–14 …(n –1)d 2–10 … 1–6 .

3. В атомах элементов главных подгрупп сумма s - и р -электронов на последнем энергетическом уровне равна номеру группы.

4. В атомах элементов побочных подгрупп сумма d -электронов на предпоследнем и s -электронов на последнем энергетических уровнях равна номеру группы, кроме атомов элементов подгрупп кобальта, никеля, меди и цинка.

Размещение электронов в атомных орбиталях одного и того же энергетического подуровня происходит в соответствии с правилом Гунда :суммарное значение спина электронов, находящихся на одном и том же подуровне, должно быть максимальным, т.е. данный подуровень на каждую орбиталь вначале принимает по одному электрону с параллельными спинами, а затем – второй электрон с противоположным спином.

Пример 2 . Напишите электронные формулы атомов элементов, имеющих порядковые номера 4, 13, 22.

Решение. Элемент с порядковым номером 4 – бериллий. Следовательно, в атоме бериллия 4 электрона. Бериллий находится во втором периоде, во второй группе главной подгруппы. Номер периода соответствует числу энергетических уровней, т.е. двум. На этих энергетических уровнях должны размещаться четыре электрона. На первом энергетическом уровне два электрона (1s 2) и на втором тоже два электрона (2s 2) (см. табл 1). Таким образом, электронная формула имеет следующий вид: 4 Ве 1s 2 2s 2 . Число электронов на последнем энергетическом уровне соответствует номеру группы, в которой он находится.

В периодической системе порядковому номеру 13 соответствует элемент алюминий. Алюминий находится в третьем периоде, в третьей группе, вглавной подгруппе. Следовательно, на третьем энергетическом уровне должны находиться три электрона, которые разместятся таким образом: 3s 2 3р 1 (сумма s - и р -электронов равна номеру группы). Десять электронов находятся на первом и втором энергетических уровнях: 1s 2 2s 2 2p 6 (см. табл. 1). В целом электронная формула алюминия следующая: 13 Al 1s 2 2s 2 2p 6 3s 2 3p 1 .

В периодической системе элемент с порядковым номером 22 – титан. В атоме титана двадцать два электрона. Размещаются они на четырех энергетических уровнях, так как элемент находится в четвертом периоде. При размещении электронов по подуровням необходимо учесть, что это – элемент четвертой группы побочной подгруппы. Поэтому на четвёртом энергетическом уровне, s -подуровне находятся два электрона: 4s 2 . Первый, второй, третий уровни s - и р -подуровни полностью заполнены электронами 1s 2 2s 2 2p 6 3s 2 3p 6 (см. табл. 1). Оставшиеся два электрона разместятся на d -подуровне третьего энергетического уровня: 3d 2 . В целом электронная формула титана такая: 22 Тi 1s 2 2s 2 2p 6 3s 2 3p 6 3d 2 4s 2 .

Проскок» электронов

При написании электронных формул следует учитывать «проскок» электронов с s -подуровня внешнего энергетического уровня ns на d -подуровень предвнешнего уровня (n – 1)d . Предполагают, что такое состояние наиболее энергетически выгодно. «Проскок» электрона происходит в атомах некоторых d -элементов, например, 24 Сr, 29 Cu, 42 Mo, 47 Ag, 79 Au, 41 Nb, 44 Ru, 45 Rh, 46 Pd.

Пример 3 . Напишите электронную формулу атома хрома с учётом «проскока» одного электрона.

Решение. Электронная формула хрома, согласно принципу минимальной энергии, должна быть такой: 24 Cr 1s 2 2s 2 2p 6 3s 2 3p 6 3d 4 4s 2 . Однако, в атоме этого элемента наблюдается «проскок» одного s -электрона с внешнего 4s -подуровня на подуровень 3d . Поэтому расположение электронов в атоме хрома такое: 24 Cr 1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 1 .

Практическая работа

1. Основные положения

Периодическая система химических элементов и строение атома

Современное определение Периодического закона

Свойства химических элементов и образуемых ими вещества находятся в периодической зависимости от зарядов их атомных ядер

Таблица Периодической системы химических элементов графически отображае Периодический закон.

Каждое число в ней характеризуе какую - либо особенность в стоении атомов:

а) порядковый (атомный) номер химического элемента укзывает на заряд его атомного ядра, то есть на число протонов, содержащихся в нем, а так как атом электронейтрален, то и на число электоронов, находящихся вокруг атомного ядра.

Число нейтронов определяют по формуле: N = A - Z ,

где А - массовое число (атомная масса), Z - порядковый номер элемента;

б) номер периода соответствует числу энергетических уровней (электорнных слоев) в атомах элементов данного периода;

в) номер группы соответствует числу электронов на внешнем уровне для элементов гоавных подгрупп и максимальному числу валентных электронов для элементов побочных подрупп.

Изменение металлических и неметаллических свойств элементов

в периодах и группах

1. В пределах одного периода с ростом порядкового номера металлические свойства элементов ослабевают, а неметаллические – усиливаются, так как:

1) растет число ē на внешнем уровне атомов (оно равно номеру группы);

2) число энергетических уровней в пределах периода не изменяется (оно равно номеру периода);

3) радиус атомов уменьшается.

2. В пределах одной и той же группы (главной подгруппы) с ростом порядкового номера металлические свойства элементов усиливаются, а неметаллические ослабевают, так как:

1) число электронов на внешнем уровне атомов одинаково (оно равно номеру группы);

2) число энергетических уровней в атомах растет (оно равно номеру периода);

3) радиус атомов увеличивается.

Доказательства сложности строения атома

1. Ирландский физик Стони ввел понятие «электрон» для обозначения частиц (например, электризация эбонитовой палочки), появление статического электричества на одежде.

2. Катодные лучи – поток электронов из атомов металла, из которого изготовлен катод, вызывали свечение стекла (Томсон и Перрен). Был установлен отрицательный заряд электрона. Этот наименьший заряд принят за единицу = -1.

Томсон установил и массу его, равную 1/1840 массы атома водорода.

3. Радиоактивность – явление, открытое А. Беккерелем. Различают 3 вида радиоактивных лучей:

а) α – лучи, состоящие из α – частиц с зарядом +2 и массой 4;

б) β – лучи – поток электронов; в) γ – лучи – электромагнитные волны.

Следовательно, атом делим и имеет сложное строение.

Таблица 1 Планетарная модель атома (Резерфорда)

Ядро

Равно числу нуклонов (сумма протонов и нейтронов)

1) р + (имеют массу = 1 и заряд = +1)

Число их равно № элемента;

2) n 0 (имеют массу = 1 и заряд = 0)

Число их N = A r Z . ( Z – число протонов)

Электронная оболочка

Состоит из электронов

(масса стремится к нулю и заряд = -1);

Число их равно № элемента.

Вся масса атома сосредоточена в ядре

Атом электронейтрален

Атом - электронейтральная система взаимодействующих элементарых частиц, состоящая из ядра (образованного протонами и нейтронами) и электронов

Строение электронных оболочек атомов

Понятие об электронной оболочке атома и энергетических уровнях

1. Электронная оболочка совокупность электронов, окружающих атомное ядро.

2. В электронной оболочке различают слои, на которых располагаются электроны с различным запасом энергии, их называют энергетические уровни . Число этих уровней равно номеру периода в таблице Менделеева.

3. Пространство вокруг ядра, в котором наиболее вероятно нахождение электрона (около 90%), называется орбиталью .

Размер и форма орбиталей

Рис. 1 Формы s-, p- и d-орбиталей

1) s 2 - электроны; сферическая, симметрична относительно ядра и не имеет направления.

2) р 6 – электроны; гантелеобразные, расположены в атоме взаимно перпендикулярно

Существуют орбитали более сложной формы: d 10 - орбитали и f 14 - орбитали.

Число энергетических уровней (электронных слоев) в атоме равно номеру периода в системе Д.И. Менделеева, к которому принадлежит химический элемент: у атомов элементов первого пеиода - один энергетический уровень, второго периода - два, третьего периода - три, седьмого периода - семь.

Наибольшее число электронов на энергетическом уровне определяется по формуле:

N = 2 n 2 , где N - максимальное число электронов;

n - номер уровня или главное квнтовое число. (Целое число n , обозначающееномер энергетического уровня, называется главным квантовым числом ).

Энергетические уровни и электронная конфигурация атома

Атом имеет сложное строение. Он состоит из ядра, в состав которого входят протоны и нейтроны, и электронов, вращающихся вокруг ядра атома. Заряд протона равен +1, а масса 1 у.е. Нейтрон - электронейтральная частица, масса примерно 1 у.е. Электрон - заряд равен -1, масса 5,5∙10 -4 у.е. В целом атом электронейтрален, число протонов в ядре атома равно числу электронов в атоме. Электроны в атоме распределяются на энергетических уровнях.

Количество энергетических уровней в атоме определяется номером периода, в котором находится данный элемент. При построении электронных моделей атомов следует помнить, что максимальное количество электронов на энергетическом уровне равно 2 n 2 , где n – номер энергетического уровня. В соответствии с этим на первом, ближайшем к ядру уровне может находиться не более 2 электронов, на втором – не более 8, на третьем – не более 18, на четвертом – не более 32. На наружном энергетическом уровне не может быть более 8 электронов.

Атомные спектры поглощения и испускания однозначно показывают, что все атомы имеют целый ряд возможных энергетических состояний, называемых основным и возбужденными электронными состояниями (рис.1).

Запись распределения электронов в атоме по электронным уровням и подуровням называется его электронной конфигурацией и может быть сделана как для основного, так и возбужденного состояния атома. Для определения конкретной электронной конфигурации атома в основном состоянии существуют следующие три положения:

Принцип заполнения (наименьшей энергии). Электроны в основном состоянии заполняют орбитали в последовательности повышения орбитальных энергетических уровней. Низшие по энергии орбитали всегда заполняются первыми.

Принцип Паули. На любой орбитали может находиться не более двух электронов, причем с противоположно направленными спинами (спин – особое свойство электрона, не имеющее аналогов в макромире, которое упрощенно можно представить как вращение электрона вокруг собственной оси).

Правило Гунда. Вырожденные (с одинаковой энергией) орбитали заполняются одиночными электронами с одинаково направленными спинами, лишь после этого идет заполнение вырожденных орбиталей электронами с противоположно направленными спинами согласно принципу Паули.

Квантовые числа

Главное квантовое число n эквивалентно квантовому числу в теории Бора. Оно в основном определяет энергию электронов на данной орбитали.

.....

....

Орбитальное квантовое число l определяет значение орбитального момента количества движения электрона на данной орбитали. Допустимые значения: 0, 1, 2, 3, ... , n-1.

Это квантовое число описывает поведение атомной орбитали при поворотах системы координат с центром на атомном ядре.

Орбитальное магнитное квантовое число m l определяет значение составляющей проекции момента количества движения электрона на выделенное направление в пространстве. В отсутствие внешнего магнитного поля электроны на орбиталях с одинаковым значением орбитального квантового числа l энергетически равноценны (т.е. их энергетические уровни вырождены).

Однако в постоянном магнитном поле некоторые спектральные линии расщепляются. Это означает, что электроны становятся энергетически неравноценными. Например, p-состояния в магнитном поле принимают 3 значения вместо одного, d-состояния – 5 значений. Допустимые значения m l для данного l : - l , ... -2, -1, 0, +1, +2, ... + l

Спиновое квантовое число m s связано с наличием собственного магнитного момента у электрона. В общем виде выражение для магнитного момента количества движения совпадает с таковым для орбитального момента:

Для электрона m s принимает только два значения: +1/2 и -1/2. Иногда для более наглядного объяснения понятия спина используют грубую аналогию – электрон представляют как летящий волчок (круговой ток, создающий собственное магнитное поле). Такая аналогия позволяет объяснить наличие спина 1/2 у электрона и протона, но не у нейтрона – частицы с нулевым зарядом.

Понятие "спин" не укладывается в наши "макропредставления" о пространстве. При всех способах его регистрации спин всегда направлен вдоль той оси, которую наблюдатель выбрал за исходную. Значение спина 1/2 означает, что электрон (протон, нейтрон) становится идентичным сам себе при обороте на 720 0 , а не 360 0 , как в нашем трехмерном мире. Спин принято считать одним из фундаментальных свойств природы (т.е. он невыводим, как гравитация и электричество).

Каждую орбиталь обозначают квадратной ячейкой, электроны – противоположно направленными стрелками (смотрите решение упражнений по этой теме)

Электронная формула – это формула, которая показывает распределение электронов на электронных слоях в атоме.

Таблица 2

Главное квантовое число, типы и число орбиталей, максимальное число электронов на подуровнях и уровнях

Энергетический уровень

(номер периода)

n

Число подуровней, равное n

Форма (тип) орбиталей

Число орбиталей

Максимальное число электронов

в подуровне

в уровне, равное n 2

на подуровнях

на уровнях

К ( n =1)

1 s

Практическая работа

Цель работы:

6) Вывод

Задание № 1

5. Число электронов N ē

6 . Заряд ядра атома , Z

7. Массовое число, А

8. Число нейтронов, N n 0 = А - N р +

а) по группе

б) по периоду

Задание № 2

1) электронную формулу атома элемента, по числу электронов на внешнем уровне металлический и неметаллический характер (если на внешнем уровне 1-3 электрона, то элемент- металл, если более 3, то элемент - неметалл;

2) электронно- структурную формулу валентной оболочки атома элемента, нормальное и возбужденное состояние атома, отрицательную и положительные степени окисления для p - элементов (неметаллов), высшую и низшую положительные степени окисления для металлов ( s - и d - семейства);

3) формулу водородного соединения (для s -элемента гидрид с Н - , для p - элемента газообразное водородное соединение с Н + ), назвать;

4) формулы оксидов, в которых проявляются положительные степени окисления, назвать, указать характер;

5) формулы соответствующих оксидам оснований и кислот, назвать; формулы солей, назвать.

Характеристика p - элемента S - серы, находится в III периоде главной подгруппы VI группы

1) 16 S 1 s 2 2 s 2 2 p 6 3 s 2 3 p 4 - неметалл, так как на внешнем уровне у атома более трех электронов - шесть

2) S 3 s 2 3 p 4 р - элемент

нормальное состояние атома - 2 непарных электрона, следовательно, S сера

S 4 проявляет отрицательную степень окисления (-2):

3 s 2 S 0 + 2 ē → S -2

S * первое возбужденное состояние - 4 непарных электрона, следовательно, S

3 d 1 проявляет положительную степень окисления (+4):

3 p 3 S 0 - 4 ē → S +4

3 s 2

второе возбужденное состояние - 6 непарных электронов, следовательно,

3 d 2 сера проявляет положительную степень окисления (+6):

S ** 3 p 3 S 0 - 6 ē → S +6

3 s 1

3) S -2 H 2 S - сероводород, водный раствор которого является сероводородной кислотой.

Соли H 2 S называются сульфидами; (назвать) К 2 S - сульфид калия.

4) S +4 SO 2 (оксид серы IV ) → кислота H 2 SO 3 → соли:

К 2 SO 3 и КН SO 3

5) S +6 SO 3 (оксид серы VI ) → кислота H 2 SO 4 → соли: К 2 SO 4 и КН SO 4

Характеристика s - элемента Са - кальция, находится в четвертом периоде главной подгруппы второй группы

1) 20 Са 1 s 2 2 s 2 2 p 6 3 s 2 3 p 6 4 s 2 K кальций металл, так как на внешнем уровне у атома меньше трёх электронов - 2 электрона

2) Са 4 s 2 s - элемент; Са 4 s 2 - нормальное состояние атома - нет непарных электронов

Са * возбужденное состояние атома - два непарных электрона, следовательно,

Са 0 - 2 ē → Са +2

1 Са - проявляет положительную степень окисления (+2); отрицательной степени

4 s 1 окисления у металлов нет

3) Са +2 Н 2 - - водородное соединение; СаН 2 (гидрид кальция)

4) Са +2 → оксид СаО → основание Са(ОН) 2 соли: 1) Са CI 2 и СаОН CI 2) CaSO 3 и Ca (HSO 3 ) 2

Задание № 3

Форма ē

элемента

Элемент

Валентная

оболочка

Низшая степень окисления

Водородное соединение

Высшая степень окисления

Формула Высшего оксида

Формула гидроксида

Формула соли

s - элемент

р - элемент

Вывод:

Практическая работа

Вариант 1

Составление электронных формул атомов элементов и графических схем, заполнение их электронами

Ход работы

Задание № 1

Заполнить таблицу:

5. Число электронов N ē

6 . Заряд ядра атома , Z

7. Массовое число, А

8. Число нейтронов, N n 0 = А - N р +

9. Написать распределение электронов по энергетическим уровням

10. Сравнение с элементами соседями:

а) по группе

б) по периоду

11. Формула высшего оксида и гидроксида и их характер

Задание № 2

Характеристика элемента по положению его в периодической системе, указать валентные возможности атома элемента

Задание № 3 Результаты работы занести в таблицу по форме:

Форма ē

элемента

Элемент

Валентная

оболочка

Низшая степень окисления

Водородное соединение

Промежуточные степени окисления

Высшая степень окисления

Формула Высшего оксида

Формула гидроксида

Формулы соли

s - элемент

p- элемент

Вывод:

Практическая работа

Вариант 2

Составление электронных формул атомов элементов и графических схем, заполнение их электронами

Ход работы

Задание № 1

Заполнить таблицу:

5. Число электронов N ē

6 . Заряд ядра атома , Z

7. Массовое число, А

8. Число нейтронов, N n 0 = А - N р +

9. Написать распределение электронов по энергетическим уровням

10. Сравнение с элементами соседями:

а) по группе

б) по периоду

11. Формула высшего оксида и гидроксида

Задание № 2

Результаты работы занести в таблицу по форме:

Форма ē

элемента

Элемент

Валентная

оболочка

Низшая степень окисления

Водородное соединение

Промежуточные степени окисления

Высшая степень окисления

Формула Высшего оксида

Формула гидроксида

Формула соли

Вывод:

Практическая работа

Вариант 3

Составление электронных формул атомов элементов и графических схем, заполнение их электронами

Ход работы

Задание № 1

Заполнить таблицу:

5. Число электронов N ē

6 . Заряд ядра атома , Z

7. Массовое число, А

8. Число нейтронов, N n 0 = А - N р +

9. Написать распределение электронов по энергетическим уровням

10. Сравнение с элементами соседями:

а) по группе

б) по периоду

11. Формула высшего оксида и гидроксида

Задание № 2

Результаты работы занести в таблицу по форме:

Форма ē

элемента

Элемент

Валентная

оболочка

Низшая степень окисления

Водородное соединение

Промежуточные степени окисления

Высшая степень окисления

Формула Высшего оксида

Формула гидроксида

Формула соли

Вывод:

Практическая работа

Вариант 4

Составление электронных формул атомов элементов и графических схем, заполнение их электронами

Цель работы:

1) Научиться давать характеристику элементов по положению их в периодической системе

2) Применить знания о строении атома при составлении характеристики атомов химических элементов

3) Записывать электронную формулу элемента

4) Определять формулу и характер высшего оксида и гидроксида; водородного его соединения

5) Давать сравнительную характеристику с соседними элементами в периоде и группе

Ход работы

Задание № 1

Заполнить таблицу:

5. Число электронов N ē

6 . Заряд ядра атома , Z

7. Массовое число, А

8. Число нейтронов, N n 0 = А - N р +

9. Написать распределение электронов по энергетическим уровням

10. Сравнение с элементами соседями:

а) по группе

б) по периоду

11. Формула высшего оксида и гидроксида

Задание № 2

Характеризуя элемент по положению его в периодической системе, указать:

Результаты работы занести в таблицу по форме:

Форма ē

элемента

Элемент

Валентная

оболочка

Низшая степень окисления

Водородное соединение

Промежуточные степени окисления

Высшая степень окисления

Формула Высшего оксида

Формула гидроксида

Формула соли

Вывод:

Практическая работа

Вариант 5

Составление электронных формул атомов элементов и графических схем, заполнение их электронами

Цель работы:

1) Научиться давать характеристику элементов по положению их в периодической системе

2) Применить знания о строении атома при составлении характеристики атомов химических элементов

3) Записывать электронную формулу элемента

4) Определять формулу и характер высшего оксида и гидроксида; водородного его соединения

5) Давать сравнительную характеристику с соседними элементами в периоде и группе

Ход работы

Задание № 1

Заполнить таблицу:

5. Число электронов N ē

6 . Заряд ядра атома , Z

7. Массовое число, А

8. Число нейтронов, N n 0 = А - N р +

9. Написать распределение электронов по энергетическим уровням

10. Сравнение с элементами соседями:

а) по группе

б) по периоду

11. Формула высшего оксида и гидроксида

(кислоты и соли - по примеру азотной и азотистой кислот)

Задание № 2

Результаты работы занести в таблицу по форме:

Форма ē

элемента

Элемент

Валентная

оболочка

Низшая степень окисления

Водородное соединение

Промежуточные степени окисления

Высшая степень окисления

Формула Высшего оксида

Формула гидроксида

Формула соли

Вывод:

Практическая работа

Вариант 6

Составление электронных формул атомов элементов и графических схем, заполнение их электронами

Цель работы:

1) Научиться давать характеристику элементов по положению их в периодической системе

2) Применить знания о строении атома при составлении характеристики атомов химических элементов

3) Записывать электронную формулу элемента

4) Определять формулу и характер высшего оксида и гидроксида; водородного его соединения

5) Давать сравнительную характеристику с соседними элементами в периоде и группе

Ход работы

Задание № 1

Заполнить таблицу:

5. Число электронов N ē

6 . Заряд ядра атома , Z

7. Массовое число, А

8. Число нейтронов, N n 0 = А - N р +

9. Написать распределение электронов по энергетическим уровням

10. Сравнение с элементами соседями:

а) по группе

б) по периоду

11. Формула высшего оксида и гидроксида

(кислоты и соли - по примеру S )

Задание № 2

Результаты работы занести в таблицу по форме:

Форма ē

элемента

Элемент

Валентная

оболочка

Низшая степень окисления

Водородное соединение

Промежуточные степени окисления

Высшая степень окисления

Формула Высшего оксида

Формула гидроксида

Формула соли

Вывод:

Практическая работа

Вариант 7

Составление электронных формул атомов элементов и графических схем, заполнение их электронами

Цель работы:

1) Научиться давать характеристику элементов по положению их в периодической системе

2) Применить знания о строении атома при составлении характеристики атомов химических элементов

3) Записывать электронную формулу элемента

4) Определять формулу и характер высшего оксида и гидроксида; водородного его соединения

5) Давать сравнительную характеристику с соседними элементами в периоде и группе

Ход работы

Задание № 1

Заполнить таблицу:

5. Число электронов N ē

6 . Заряд ядра атома , Z

7. Массовое число, А

8. Число нейтронов, N n 0 = А - N р +

9. Написать распределение электронов по энергетическим уровням

10. Сравнение с элементами соседями:

а) по группе

б) по периоду

11. Формула высшего оксида и гидроксида

(кислоты и соли - по примеру S )

Задание № 2

Характеризуя элемент по положению его в периодической системе, указать:

Результаты работы занести в таблицу по форме:

Форма ē

элемента

Элемент

Валентная

оболочка

Низшая степень окисления

Водородное соединение

Промежуточные степени окисления

Высшая степень окисления

Формула Высшего оксида

Формула гидроксида

Формула соли

Вывод:

Практическая работа

Вариант 8

Составление электронных формул атомов элементов и графических схем, заполнение их электронами

Цель работы:

1) Научиться давать характеристику элементов по положению их в периодической системе

2) Применить знания о строении атома при составлении характеристики атомов химических элементов

3) Записывать электронную формулу элемента

4) Определять формулу и характер высшего оксида и гидроксида; водородного его соединения

5) Давать сравнительную характеристику с соседними элементами в периоде и группе

Ход работы

Задание № 1

Заполнить таблицу:

5. Число электронов N ē

6 . Заряд ядра атома , Z

7. Массовое число, А

8. Число нейтронов, N n 0 = А - N р +

9. Написать распределение электронов по энергетическим уровням

10. Сравнение с элементами соседями:

а) по группе

б) по периоду

11. Формула высшего оксида и гидроксида

(кислота - борная, соли - бораты)

Задание № 2

Характеризуя элемент по положению его в периодической системе, указать:

Результаты работы занести в таблицу по форме:

Форма ē

элемента

Элемент

Валентная

оболочка

Низшая степень окисления

Водородное соединение

Промежуточные степени окисления

Высшая степень окисления

Формула Высшего оксида

Формула гидроксида

Формула соли

Вывод: