Это наука о создании новых и улучшении существующих пород животных, сортов растений, штаммов микроорганизмов. В основе селекции лежат такие методы, как

Селекция - наука о создании новых пород животных, сортов растений, штаммов микроорганизмов. Селекцией называют также отрасль сельского хозяйства, занимающуюся выведением новых сортов и гибридов сельскохозяйственных культур и пород животных. Селекция и семеноводство озимой пшеницы в Сибири.

Селекция растений Методы селекции растений. Основными методами селекции растений являются отбор и гибридизация. Однако методом отбора нельзя получить формы с новыми признаками и свойствами; он позволяет только выделить генотипы, уже имеющиеся в популяции. Для обогащения генофонда создаваемого сорта растений и получения оптимальных комбинаций признаков применяют гибридизацию с последующим отбором. В селекции различают два основных вида искусственного отбора: массовый и индивидуальный. мутационной селекции растения

Массовый и индивидуальный отбор Массовый отбор - это выделение группы особей, сходных по одному или комплексу желаемых признаков, без проверки их генотипа. Например, из всей популяции злаков того или иного сорта для дальнейшего размножения оставляют только те растения, которые отличаются устойчивостью к возбудителям болезней и полеганию, имеют крупный колос с большим числом колосков и т. д. При их повторном посеве снова отбирают растения с нужными качествами. Сорт, полученный таким способом, генетически однороден, и отбор периодически повторяют. При индивидуальном отборе (по генотипу) получают и оценивают потомство каждого отдельного растения в ряду поколений при обязательном контроле наследования интересующих селекционера признаков. В результате индивидуального отбора увеличивается число гомозигот, т. е. полученное поколение становится генетически однородным. Подобный отбор обычно применяют среди самоопыляемых растений (пшеницы, ячменя и др.) для получения чистых линий. Чистая линия - это группа растений, являющихся потомками одной гомозиготной самоопыляемой особи. Они обладают максимальной степенью гомозиготности и представляют очень ценный исходный материал для селекции.

Селекция животных Особенности селекции животных. Основные принципы селекции животных не отличаются от принципов селекции растений. Однако селекция животных имеет некоторые особенности: для них характерно только половое размножение; в основном очень редкая смена поколений (у большинства животных через несколько лет); количество особей в потомстве невелико. Поэтому в селекционной работе с животными важное значение приобретает анализ совокупности внешних признаков, или экстерьера, характерного для той или иной породы.

Селекция золотой рыбки и попугаев Путем селекции получена вуалевая форма. Профессиональный опыт разведения и селекции 27 лет.

Селекция микроорганизмов Микроорганизмы (бактерии, микроскопические грибы, простейшие и др.) играют исключительно важную роль в биосфере и хозяйственной деятельности человека. Из более чем 100 тыс. видов известных в природе микроорганизмов человеком используется несколько сотен, и число это растет. Качественный скачок в их использовании произошел в последние десятилетия, когда были установлены многие генетические механизмы регуляции биохимических процессов в клетках микроорганизмов. Селекция микроорганизмов (в отличие от селекции растений и животных) имеет ряд особенностей: 1) у селекционера имеется неограниченное количество материала для работы: за считанные дни в чашках Петри или пробирках на питательных средах можно вырастить миллиарды клеток; 2) более эффективное использование мутационного процесса, поскольку геном микроорганизмов гаплоидный, что позволяет выявить любые мутации уже в первом поколении; 3) простота генетической организации бактерий: значительно меньшее количество генов, их генетическая регуляция более простая, взаимодействия генов просты или отсутствуют.

Были времена, когда науку было возможно разбить на обширные и довольно понятные дисциплины - астрономию, химию, биологию, физику. Но на сегодняшний день каждая из этих областей становится более специализированной и связанной с остальными дисциплинами, что приводит к возникновению абсолютно новых отраслей науки.

Предлагаем вашему вниманию подборку из одиннадцати новейших направлений науки, активно развивающихся в настоящем времени.

Учёные-Физики уже более века знают о квантовых эффектах, таких как способность квантов, к исчезновению в одном месте и появлению в другом, или же одновременно присутствовать в нескольких местах. Однако поразительные свойства квантовой механики применяются не только в физике, но и в биологии.

Лучшим примером квантовой биологии является фотосинтез: растения, а также некоторые бактерии используют солнечную энергию, для построения необходимых им молекул. Оказывается, что на самом деле фотосинтез опирается на удивительное явление - небольшие энергетические массы «изучают» всевозможные пути для самоприменения, а после «выбирают» эффективнейший из них. Возможно, навигационные способности птиц, мутации ДНК и даже наше с вами обоняние, так или иначе, имеют контакт с квантовыми эффектами. Хотя эта научная область пока довольно умозрительна и оспорима, учёные считают, что перечень однажды взятых из квантовой биологии идей может привести к созданию новых лекарственных препаратов и систем биомимитерики (биомиметрика - является ещё одной новой научной областью, где биологические системы, а также структуры используются непосредственно для создания новейших материалов и устройств).

В одном ряду с экзоокеанографами и экзогеологами, экзометеорологи заинтересованы в изучении природных процессов, которые происходят на других планетах. Сейчас, когда благодаря телескопам высокой мощности стало возможным изучение внутренних процессов на близлежащих планетах и спутниках, экзометеорологи могут вести наблюдения за их атмосферными, а также погодными условиями. Планеты Юпитер и Сатурн со своими огромными масштабами погодных явлений является кандидатом для исследований, так же как и планета Марс с пылевыми бурями отличающимися своей регулярностью.
Экзометеорологи берутся за изучение планет, которые находятся за пределами Солнечной системы. И что очень интересно, ведь именно они могут отыскать в итоге признаки внеземного существования жизни на экзопланетах таким путём, как обнаружением в атмосфере следов органики или повышенного уровня СО 2 (углекислый газ) - признака цивилизации индустриального строя.

Нутригеномика - это наука об изучении сложных взаимосвязей между продуктами питания и экспрессией генома. Учёные этой сферы, стремятся к тому, чтобы понять основную роль генетических вариаций, а также диетических реакций на влияние питательных веществ на человеческий геном.
Продукты питания действительно оказывает большое влияние на человеческое здоровье - и начинается всё в прямом смысле на микроскопическом молекулярном уровне. Данная наука работает над изучением того, как именно человеческий геном влияет на гастрономические предпочтения, и наоборот. Главная цель дисциплины – это создание персонального питания, которое необходимо для того, чтобы наши продукты питания идеально подходили нашему уникальному генетическому набору.

Клиодинамика является дисциплиной сочетающей в себе историческую макросоциологию, клиометрику, моделирование долгосрочных соц. процессов на основе математических методов, а также систематизацию исторических данных и их анализ.
Название науки происходит от имени Клио, греческой вдохновительницы истории и поэзии. Проще говоря, данная наука является попыткой предугадания и описания широких социальных исторических связей, изучением прошлого, а также потенциальным способом предсказывать будущее, например, для прогнозов общественных волнений.

Синтетическая биология - это наука по проектированию и строительству новейших биологических частей, устройств и систем. Также она включает в себя модернизацию существующих на данный момент времени биологических систем для колоссального количества их применений.

Крейг Вентер, один из лучших специалистов в данной области в 2008-м году сделал заявление, что ему удалось воссоздать всю генетическую цепочку бактерии склеиванием её хим. компонентов. Спустя 2 года у его команды получилось создать «синтетическую жизнь» - молекулы цепочки ДНК, созданные с помощью цифрового кода, после напечатанные на специальном 3D-принтере и погружённые в живую бактерию.

В будущем биологи намерены анализировать разнообразные типы генетического кода для создания необходимых организмов специально для внедрения в тела биороботов, для которых станет возможным производить хим. вещества - биотопливо - абсолютно с нуля. Есть также идея создания искусственной бактерии для борьбы с загрязнением окружающей среды или вакцины для лечения опасных заболеваний. Потенциал у данной дисциплины просто колоссальный.

Эта научная область находится на этапе зарождения, но уже на данный момент понятно, что это только вопрос времени - рано или поздно учёным удастся получить наилучшее понимание всей ноосферы человечества (совокупности абсолютно всей известной информации) и того, как информационное распространение влияет практически на все аспекты жизни человека.

Схоже с рекомбинантной ДНК, в которой разнообразные последовательности геномов собираются вместе, для создания чего-то нового, рекомбинантная меметика занимается изучением того, как одни мемы - идеи, которые передаются от человека к человеку - скорректироваются и объединяются с другими мемами - устоявшимися различными комплексами взаимосвязанных мемов. Это может стать очень полезным аспектом в «социально-терапевтических» целях, к примеру, в борьбе с распространением экстремистских идеологий.

Также как и клиодинамика, данная наука изучает социальные явления и тенденции. Основное место в ней занимает использование персональных компьютеров и связанных с ними информационных технологий. Конечно, данная дисциплина получила своё развитие только вместе с появлением компьютеров и распространением интернета.

Особое внимание уделяется колоссальным информационным потокам из нашей повседневности, например, электронным письмам, телефонным звонкам, комментариям в соц. сетях, покупкам по кредитным картам, запросам в поисковых системах и т д. За примеры работ можно взять исследование структуры соц. сетей и распространения информации через них, или же, изучение возникновений интимных отношений в сети интернет.

В основном, экономика не имеет прямых контактов с обычными научными дисциплинами, но всё может измениться из-за тесного взаимодействия абсолютно всех отраслей науки. Данную дисциплину часто ошибочно принимают за поведенческую экономику (изучением человеческого поведения в сфере экономических решений). Когнитивная же экономика - это наука о направлении наших мыслей.

«Когнитивная экономика… обращает своё внимание на то, что на самом деле происходит в голове человека, когда он делает свой выбор. Что собой представляет внутренняя структура принятия решения человеком, что на это влияет, какой информацией в этот момент пользуется наш разум и как она обрабатывается, какие внутренние формы предпочтения у человека и, в итоге, как все эти процессы связаны с поведением?».

Другими словами, свои исследования учёные начинают на низшем, довольно упрощённом уровне, и создают микромодели принципов принятия решений специально для разработки масштабной модели экономического поведения. Очень часто данная научная дисциплина имеет отношения со смежными областями, к примеру, вычислительной экономикой или же когнитивной наукой.

В основном электроника имеет прямую связь с инертными и неорганическими электрическими проводниками и полупроводниками наподобие меди и кремния. Однако новая отрасль электроники пользуется проводящими полимерами и небольшими проводящими молекулами, в основе которых стоит углерод. В органическую электронику входит разработка, синтез и обработка органических и неорганических функциональных материалов вместе с развитием передовых микротехнологий и нанотехнологий.

Честно говоря, это не совсем новая научная отрасль, первые разработки осуществились ещё в 70-х годах 20-го века. Однако совместить все данные воедино, наработанные за время существования данной науки получилось только недавно, отчасти благодаря нанотехнологической революции. За счёт органической электроники в скором времени могут появиться первые органические солнечные батареи, монослои в электронных устройствах с функцией самоорганизации и органические протезы, которые послужат людям заменой повреждённых конечностей: в будущем, так называемые роботы киборги, вполне возможно, будут иметь в своём составе большую степень органики, чем из синтетики.

Если вас одинаково привлекает математика и биология, то данная дисциплина предназначена именно вас. Вычислительная биология – это наука, которая стремится к понимаю биологических процессов посредством математических языков. Всё это в одинаковой степени применяется и для остальных количественных систем, к примеру, физики и информатики. Канадские учёные из Университета Оттавы объясняют, как это стало возможным:

«Вместе с развитием биологического приборостроения и довольно лёгкому доступу к вычислительным мощностям, биологическим наукам приходится управлять всё большим объёмом данных, а скорость приобретаемых знаний при этом только возрастает. Таким образом, понимание данных сейчас требует строго вычислительного подхода. В то же время, с точки зрения физиков и математиков, биология доросла до такого уровня, когда для теоретических моделей биологических механизмов стало возможным экспериментальное проведение. Это и привело к росту вычислительной биологии.»

Ученые, которые работают в этой области, анализируют и измеряют абсолютно всё, от молекул до экосистем.

Селе́кция (лат. selectio - выбирать) - наука о создании новых и улучшении существующих пород животных, сортов растений, штаммов микроорганизмов. Селекцией называют также отрасль сельского хозяйства, занимающуюся выведением новых сортов и гибридов сельскохозяйственных культур и пород животных

порода - в плодоводстве совокупность родов и видов полезных пищевых растений, обладающих определёнными сходными характеристиками..

Сорт (англ. cultivar) - группа культурных растений, полученная в результате селекции в рамках низшего из известных ботаническихтаксонов и обладающая определённым набором характеристик (полезных или декоративных), который отличает эту группу растений от других растений того же вида.

Штамм (от нем. Stamm, буквально - «ствол», «основа») - чистая культура вирусов, бактерий, других микроорганизмов или культура клеток, изолированная в определённое время и в определённом месте. Поскольку многие микроорганизмы размножаются митозом (делением), без участия полового процесса, по существу, виды у таких микроорганизмов состоят из клональных линий, генетически и морфологическиидентичных исходной клетке. Штамм не является таксономической категорией, наинизшим таксоном у всех организмов является вид, один и тот же штамм не может быть выделен второй раз из того же источника в другое время.

Отнесение микроорганизма к определённому виду происходит на основе достаточно широких признаков, таких как тип нуклеиновой кислоты и строение капсида у вирусов; способности расти на определённых углеводородах и тип выделяемых продуктов обмена веществ, а также консервативных последовательностях генома у бактерий. Внутри вида существуют вариации относительно, размера и формы бляшек(негативные «колонии» вируса) или колоний микроорганизма, уровню продукции ферментов, наличию плазмид, вирулентности и т. п.

В мире не существует общепризнанной номенклатуры названия штаммов, и используемые названия достаточно произвольны. Как правило, они состоят из отдельных букв и цифр, которые записываются после видового названия. Например, один из самых известных штаммов кишечной палочки.

Отбор и типы скрещивания

Отбор родительских форм и типы скрещивания животных проводятся с учетом цели, поставленной селекционером. Это может быть целенаправленное получение определенного экстерьера, повышение молочности, жирности молока, качества мяса и т. д. Разводимые животные оцениваются не только по внешним признакам, но и по происхождению и качеству потомства. Поэтому необходимо хорошо знать их родословную. В племенных хозяйствах при подборе производителей всегда ведется учет родословных, в которых оцениваются экстерьерные особенности и продуктивность родительских форм в течение ряда поколений. По признакам предков, особенно по материнской линии, можно судить с известной вероятностью о генотипе производителей.



В селекционной работе с животными применяют в основном два способа скрещивания: аутбридинг и инбридинг.

Аутбридинг, или неродственное скрещивание между особями одной породы или разных пород животных, при дальнейшем строгом отборе приводит к поддержанию полезных качеств и к усилению их в ряду следующих поколений.

При инбридинге в качестве исходных форм используются братья и сестры или родители и потомство (отец-дочь, мать-сын, двоюродные братья-сестры и т. д.). Такое скрещивание в определенной степени аналогично самоопылению у растений, которое также приводит к повышению гомозиготности и, как следствие, к закреплению хозяйственно ценных признаков у потомков. При этом гомозиготизация по генам, контролирующим изучаемый признак, происходит тем быстрее, чем более близкородственное скрещивание используют при инбридинге. Однако гомозиготизация при инбридинге, как и в случае растений, ведет к ослаблению животных, снижает их устойчивость к воздействию среды, повышает заболеваемость. Во избежание этого необходимо проводить строгий отбор особей, обладающих ценными хозяйственными признаками.

В селекции инбридинг обычно является лишь одним из этапов улучшения породы. За ним следует скрещивание разных межлинейных гибридов, в результате которого нежелательные рецессивные аллели переводятся в гетерозиготное состояние и вредные последствия близкородственного скрещивания заметно снижаются.



У домашних животных, как и у растений, наблюдается явление гетерозиса: при межпородных или межвидовых скрещиваниях у гибридов первого поколения происходит особенно мощное развитие и повышение жизнеспособности. Классическим примером проявления гетерозиса является мул - гибрид кобылы и осла. Это сильное, выносливое животное, которое может использоваться в значительно более трудных условиях, чем родительские формы.

Гетерозис широко применяют в промышленном птицеводстве (пример - бройлерные цыплята) и свиноводстве, так как первое поколение гибридов непосредственно используют в хозяйственных целях.

Отдаленная гибридизация. Отдаленная гибридизация домашних животных менее эффективна, чем растений. Межвидовые гибриды животных часто бывают бесплодными. При этом восстановление плодовитости у животных представляет более сложную задачу, поскольку получение полиплоидов на основе умножения числа хромосом у них невозможно. Правда, в некоторых случаях отдаленная гибридизация сопровождается нормальным слиянием гамет, обычным мейозом и дальнейшим развитием зародыша, что позволило получить некоторые породы, сочетающие ценные признаки обоих использованных в гибридизации видов. Например, в Казахстане на основе гибридизации тонкорунных овец с диким горным бараном архаром создана новая порода тонкорунных архаромериносов, которые, как и архары, пасутся на высокогорных пастбищах, недоступных для тонкорунных мериносов. Улучшены породы местного крупного рогатого скота.

Достижения российских и белорусских селекционеров-животноводов

Селекционерами России достигнуты значимые успехи в создании новых и улучшении существующих пород животных. Так, костромская порода крупного рогатого скота отличается высокой молочной продуктивностью - более 10 тыс. кг молока в год. Сибирский тип российской мясо-шерстной породы овец характеризуется высокой мясной и шерстной продуктивностью. Средняя масса племенных баранов составляет 110-130 кг, а средний настриг шерсти в чистом волокне - 6-8 кг. Большие достижения имеются также в селекции свиней, лошадей, кур и многих других животных.

В результате длительной и целенаправленной селекционно-племенной работы учеными и практиками Беларуси выведен черно-пестрый тип крупного рогатого скота. Коровы этой породы в хороших условиях кормления и содержания обеспечивают удои по 4-5 тыс. кг молока жирностью 3,6- 3,8 % в год. Генетический же потенциал молочной продуктивности черно-пестрой породы составляет 6,0-7,5 тыс. кг молока за лактацию. В хозяйствах Беларуси насчитывается около 300 тыс. голов скота такого типа.

Породы белорусских черно-пестрых и крупных белых свиней созданы специалистами селекционного центра БслНИИ животноводства. Такие породы свиней отличаются тем, что животные достигают живой массы 100 кг за 178-182 дня на контрольном откорме при среднесуточном приросте свыше 700 г, а приплод составляет 9-12 поросят за опорос.

Различные кроссы кур (например, Беларусь-9) характеризуются высокой яйценоскостью: за 72 недели жизни - 239-269 яиц при средней массе каждого 60 г, что соответствует показателям высокопродуктивных кроссов на международных конкурсах.

Продолжается селекционная работа по укрупнению, повышению скороспелости и работоспособности лошадей белорусской упряжной группы, улучшению продуктивного потенциала овец по настригу шерсти, живой массе и плодовитости, по созданию линий и кроссов мясных уток, гусей, высокопродуктивной породы карпа и др.

Вопрос 1. Что такое селекция?

Селекция — это наука о создании новых и улучшении существующих сортов растений, пород животных и штаммов микроорганиз-мов. Одновременно селекцией называют и сам процесс создания сортов, пород и штаммов. Теоретической основой селекции является ге-нетика. Благодаря селекции из примерно 150 видов культурных растений и 20 видов одо-машненных животных созданы тысячи разно-образных пород и сортов. Селекция пришла на смену стихийным, сформировавшимся на бы-товом уровне приемам по содержанию и разве-дению растений и животных, которыми чело-век пользовался в течение тысяч лет.

Вопрос 2. Что называют породой, сортом, штаммом?

Порода, сорт или штамм — это совокуп-ность особей одного вида, искусственно со-зданная человеком и характеризующаяся оп-ределенными наследственными свойствами. Все организмы этой совокупности обладают набором генетически зафиксированных мор-фологических и физиологических признаков. Это означает, что все ключевые гены переведе-ны в гомозиготное состояние и расщепления в ряду поколений не происходит. Породы, сорта и штаммы способны максимально проявить свои полезные для человека качества лишь в условиях, для которых они были созданы.

Вопрос 3. Какие основные методы селекции вы знаете?

Основными методами селекции являются отбор и гибридизация.

Отбор — это выбор в каждом поколении осо-бей с определенными признаками с целью их по-следующего скрещивания. Отбор обычно ведут в течение нескольких подряд идущих поколений. Различают отбор массовый и индивидуальный.

Гибридизация — это направленное скрещи-вание определенных особей для получения но-вых или закрепления нужных признаков с целью выведения еще не существующей породы (сорта) или сохранения свойств уже имеющейся совокупности особей. Гибридизация бывает вну-тривидовая и межвидовая (отдаленная).

Вопрос 4. Что такое массовый отбор, индиви-дуальный отбор?

Массовый отбор производится по фено-типическим признакам и обычно используется и растениеводстве при работе с перекрестно-опыляющимися растениями. Если необходи-мые признаки популяции (например, вес семе-ни) улучшились, то можно считать, что мас-совый отбор по фенотипу был эффективен.

Именно таким путем были созданы многие со-рта культурных растений. В случае селекции микроорганизмов возможно использование только массового отбора.

При индивидуальном отборе идет выбор отдельных особей, причем потомство каждой из них изучают и контролируют на протяже-нии нескольких поколений. Это позволяет оп-ределить генотипы особей и использовать для дальнейшей селекции те организмы, которые обладают оптимальным сочетанием полезных для человека признаков и свойств. В результа-те получают сорта и породы с высокой одно-родностью и постоянством признаков, по-скольку все входящие в них особи являются потомками небольшого числа родителей. На-пример, некоторые породы кошек и сорта де-коративных растений являются результатом сохранения единичной мутации (т. е. изменен-ного генотипа одной особи-предка).

Вопрос 5. Какие сложности возникают при пос-тановке межвидовых скрещиваний? Материал с сайта

Межвидовое скрещивание возможно только для биологически близких видов (лошадь и осел, хорек и норка, лев и тигр). Однако даже в этом случае гибриды, хотя и характеризуются гетерозисом (т. е. превосходят по своим свойст-вам родителей), часто оказываются бесплодны-ми или низкоплодовитыми. Причина этого заключается в невозможности конъюгации хромосом разных биологических видов, в ре-зультате чего происходит нарушение мейоза и гаметы не образуются. Для решения этой проблемы используют различные приемы. В частности, с целью получения плодовитого гибрида капусты и редьки селекционер Г. Д. Карпеченко использовал метод полиплоидизации. Он скрещивал не диплоидные, а тетраплоидные растения. В результате этого в первой профазе мейоза (профаза I) хромосомы, принадлежащие одному виду, могли образовывать биваленты. Деление проходило нормально, и формирова-лись полноценные гаметы. Этот эксперимент стал важным этапом в развитии селекции.