Биология медь олово алюминий коррекционная школа презентация. Презентация на тему "медь"

научился обрабатывать и использовать для своих нужд. Найденные в верховьях реки Тигр изделия из меди датируются десятым тысячелетием до нашей эры. Позднее широкое применение сплавов меди определило материальную культуру бронзового века (конец 4 - начало 1 тысячелетия до нашей эры) и в дальнейшем сопровождало развитие цивилизации на всех этапах. Медь и ее использовались для изготовления посуды, утвари, украшений, различных художественных изделий. Особенно велика была роль бронзы. С 20 века главное применение меди обусловлено ее высокой электропроводимостью. Более половины добываемой меди используется в электротехнике для изготовления различных проводов, кабелей, токопроводящих частей электротехнической аппаратуры. Из-за высокой теплопроводности медь - незаменимый материал различных теплообменников и холодильной аппаратуры. Широко применяется медь в гальванотехнике - для нанесения медных покрытий, для получения тонкостенных изделий сложной формы, для изготовления клише в полиграфии и др.

Медь и ее соединения

Учитель МБОУ лицея №64

Музыченко-Бакланова Г.Л.

г.Краснодар


Положение в Периодической системе

I группа, побочная подгруппа.

64 29 Cu

d-элемент

1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 1

Степени окисления +1, +2


Физические свойства меди.

Медь - металл розово-красного цвета, относится к группе тяжелых металлов, является отличным проводником тепла и электрического тока. Электропроводность меди в 1,7 раза выше, чем у алюминия, и в 6 раз выше, чем у железа.


Химические свойства меди.

Медь - малоактивный металл, в электрохимическом ряду напряжений она стоит правее водорода.

1.Окисление во влажном воздухе

2Cu + Н 2 О + O 2 + CO 2 = (CuOH) 2 CO 3

2. Медь реагирует с галогенами при нагревании

Cu + Cl 2 = CuCl 2

3. При сплавлении меди с серой образуетcя нерастворимый

в воде сульфид

2Cu + S = Cu 2 S

4. Взаимодействие с кислородом

4Cu + O 2 = 2Cu 2 O

2Cu + O 2 = 2CuO


Химические свойства меди.

5. В присутствии окислителей, прежде всего кислорода, медь реагирует с соляной и разбавленной серной кислотой, но водород при этом не выделяется:

2Cu + 4HCl + O 2 = 2CuCl 2 + 2H 2 O.

6. С азотной кислотой различных концентраций медь реагирует активно, при этом выделяются различные оксиды азота

3Cu + 8HNO 3 = 3Cu(NO 3 ) 2 + 2NO + 4H 2 O.

7. С концентрированной серной кислотой медь реагирует при сильном нагревании:

Cu + 2H 2 SO 4 = CuSO 4 + SO 2 + 2H 2 O.

8. Практическое значение имеет способность меди реагировать с растворами солей железа (III):

2FeCl 3 + Cu = CuCl 2 + 2FeCl 2


Соединения меди

Оксид меди (I)

Cu2O – красновато-коричневые кристаллы

1.В воде не растворяется и не реагирует с ней. Имеет слабовыраженные амфотерные свойства с преобладанием основных.

2.Взаимодействует с растворами щелочей с образованием гидроксокомплексов:

Cu 2 O + 2NaOH + H 2 O = 2Na.

3.В водных растворах аммиака образует гидроксид диамминмеди (I):

Cu 2 O + 4NH 3 + H 2 O = 2OH.

4.С соляной кислотой взаимодействует с образованием дихлорокупрата (I) водорода:

Cu 2 O + 4HCl = 2H + H 2 O.


Соединения меди(+1)

окислитель

Cu 2 +1 O + CO = 2Cu 0 + CO 2

\ Cu +1 + 1e Cu 0

диспропорционирование

Cu 2 +1 O = Cu +2 O + Cu 0

восстановитель

4Cu +1 CL + O 2 + 4HCL = 4Cu +2 CL 2 + 2H 2 O

Cu +1 - 1e Cu +2


Соединения меди(+2)

гидроксид

CuO -амфотерный, черный

Получение

Cu(OH) 2 - амфотерный, синий.

Получение

2Cu(NO 3 ) 2 = 2CuO + 4NO 2 + O 2

Химические свойства

CuCL 2 + 2NaOH = Cu(OH) 2 + 2NaCL

Химические свойства

-реагирует с кислотами и щелочами

CuO + H 2 SO 4 = CuSO 4 + H 2 O

Cu(OH) 2 + 2HCl = CuCl 2 + 2H 2 O

CuO + Na 2 O = Na 2 CuO 2

Cu(OH) 2 + 2NaOH = Na 2 Cu(OH) 4

Образование комплексов

Cu(OH) 2 + 4NH 3 = Cu(NH 3 ) 4 (OH) 2

Сг +2 - окислитель

Cu +2 O + H 2 = Cu 0 + H 2 O


Область применения меди

Сплав меди, известный с древнейших времен, - бронза - содержит 4-30% олова (обычно 8-10%). Интересно, что бронза по своей твердости превосходит отдельно взятые чистые медь и олово.

Из бронзы отливали в средние века орудия и многие другие изделия. Знаменитые Царь-пушка и Царь-колокол в Московском Кремле также отлиты из сплава меди с оловом.


Домашнее задание - выучить изученную тему, - к ОВР(изученных в классе) составить электронный баланс, - записать уравнения реакций обмена с участием солей меди(II) в молекулярном, ионном видах; 2-е задание (индивидуальное) - подготовить слайд-презентацию о нахождении меди в природе, применении меди, ее соединений, сплавы меди, получение, медь в организме человека.

Медь - элемент побочной подгруппы первой группы, четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 29. Обозначается символом Cu (лат. Cuprum). Простое вещество медь -это пластичный переходный металл золотисто-розового цвета (розового цвета при отсутствии оксидной плёнки). C давних пор широко применяется человеком.

Физические свойства меди: золотисто-розовый пластичный металл, на воздухе быстро покрывается оксидной плёнкой, которая придаёт ей характерный интенсивный желтовато-красный оттенок. Тонкие плёнки меди на просвет имеют зеленовато-голубой цвет. Медь образует кубическую гранецентрированную решётку Медь обладает высокой тепло- и электропроводностью (занимает второе место по электропроводности после серебра, удельная проводимость при 20 °). Имеет два стабильных изотопа - 63 Cu и 65 Cu, и несколько радиоактивных изотопов. Самый долгоживущий из них, 64 Cu, имеет период полураспада 12,7 ч и два варианта распада с различными продуктами. Существует ряд сплавов меди: латуни - с цинком, бронзы - с оловом и другими элементами.

Содержание в природе: Медь встречается в природе как в соединениях, так и в самородном виде. Промышленное значение имеют халькопирит CuFeS 2 , халькозин Cu 2 S и борнит Cu 5 FeS 4 . Вместе с ними встречаются и другие минералы меди: ковеллин CuS , куприт Cu 2 O. Иногда медь встречается в самородном виде, масса отдельных скоплений может достигать 400 тонн. Сульфиды меди образуются в основном в среднетемпературных гидротермальных жилах. Также нередко встречаются месторождения меди в осадочных породах - медистые песчаники и сланцы. Наиболее известные из месторождений такого типа - Удоканской в Читинской области, в Казахстане,в Германии. Другие самые богатые месторождения меди находятся в Чили и США. Большая часть медной руды добывается открытым способом.

Способы получения меди Для получения меди применяют пиро -, гидро - и электрометаллургические процессы. Пирометаллургический процесс получения меди из сульфидных руд типа CuFeS 2 выражается суммарным уравнением: 2CuFeS 2 + 5O 2 + 2SiO 2 = 2Cu + 2FeSiO 3 + 4SO 2 . Гидрометаллургические методы получения меди основаны на селективном растворении медных минералов в разбавленных растворах серной кислоты или аммиака, из полученных растворов медь вытесняют металлическим железом: CuSO 4 + Fe = Cu + FeSO 4 . Электролизом получают чистую медь: 2CuSO 4 + 2H 2 O = 2Cu + O 2 + 2H 2 SO 4 ; на катоде выделяется медь, на аноде – кислород.

Химические св-ва меди: Медь относится к малоактивным металлам. При обычных условиях она не взаимодействует с водой, растворами щелочей, соляной и разбавленной серной кислотой. Однако в кислотах-сильных окислителях (например, азотной и концентрированной серной)-медь растворяется: Сu + 8HN0 3 = 3Cu(N0 3) 2 + 2NO + 4Н 2 0 разбавленная Сu + 4HN0 3 = Cu (N0 3) 2 + 2N0 2 + 2Н 2 0 концентрированная

Медный порошок реагирует с хлором, серой и бромом, при комнатной температуре: При 300-400 °C реагирует с серой и селеном:

Применение меди: В электротехнике: медь широко применяется в электротехнике для изготовления силовых кабелей, проводов или других проводников, например, при печатном монтаже. Медные провода, в свою очередь, также используются в обмотках энергосберегающих электроприводов и силовых трансформаторов. Для этих целей металл должен быть очень чистый: примеси резко снижают электрическую проводимость. Теплообмен: Другое полезное качество меди - высокая теплопроводность. Это позволяет применять её в различных теплоотводных устройствах, теплообменниках, к числу которых относятся и широко известные радиаторы охлаждения, кондиционирования и отопления.

Используется в сплавах: Ювелирные сплавы: В ювелирном деле часто используются сплавы меди с золотом для увеличения прочности изделий к деформациям и истиранию, так как чистое золото - очень мягкий металл и нестойко к этим механическим воздействиям. Другие сферы применения: Медь - самый широко употребляемый катализатор полимеризации ацетилена.Широко применяется медь в архитектуре.

Введение. Так уж случилось, что в одной подгруппе оказались медь, серебро и золото: элементы- ровесники цивилизации. Все они в разное время выступали в качестве конечного мерила ценностей, проще говоря, денег. Из этих металлов ковали оружие, делали домашнюю утварь и украшения. В наши дни медь, серебро и золото- в самой гуще технического прогресса. Физик подчеркнёт их непревзойдённую тепло и электропроводность. Ваятель отметит пластичность и красивый внешний вид. Его поддержат ювелир и чеканщик, а химик непременно вспомнит о благородной инертности и высокой коррозионной стойкости этих металлов. Золотая маска фараона Тутанхамона. Золотой самородок «Мефистофель» массой 20,25 г, найденный в Сибири. Алмазный фонд. Москва. Самородок серебра Шапка Мономаха. Bocток, конец 13 начало 14 вв. Чаша. Древняя Русь Чернигов, 12 в. Серебро; ковка, резьба. Принадлежала князю Владимиру Давыдовичу Черниговскому.


История меди. Медь известна с незапамятных времён и входит в «великолепную семёрку» древнейших металлов, используемых человечеством, -это золото, серебро, медь, железо, олово, свинец и ртуть. По археологическим данным, медь была известна людям уже 600 лет назад. Она оказалась первым металлом, заменившим древнему человеку камень в первобытных орудиях труда. Это было начало т. наз. медного века, который длился около 2000 лет. Из меди выковывали, а потом и выплавляли топоры, ножи, булавы, предметы домашнего обихода. По преданию, античный бог-кузнец Гефест выковал для непобедимого Ахилла щит из чистой меди. Камни для 147-метровой пирамиды Хеопса. Фреска из Помпей: Гефест показывает Фетиде щит, изготовленный для Ахилла. Ок. 70 н. э. Национальный музей. Неаполь.


Сейчас невозможно установить, когда человек впервые познакомился с медью. Во всяком случае, около 3000 лет до н. э. египтяне уже могли делать из неё проволоку. В природе медь встречается иногда в самородном состоянии, и это облегчило добычу древним мастерам. Они умели каменными инструментами выковывать из этого металла различные изделия. Позднее стали разрабатываться медные копи, которые были разбросаны по всей планете: и в Северной Америке на берегах Великих озёр, и в Азии на Синайском п-ове, и в Европе на территории теперешней Австрии, и на о-ве Кипр. По мнению специалистов, латинское наименование металла "купрум" произошло от названия этого острова. Привычное русскому уху имя металла - "медь", вероятно, пошло от старославянского "смита", что означало металл вообще. Самородок меди.


Применение меди. Медь издавна применялась в строительстве: древние египтяне строили медные водопроводы; крыши средневековых замков и церквей покрывали листовой медью, например знаменитый королевский замок в Эльсиноре (Дания) покрыт кровельной медью. Из меди изготовляли монеты и украшения. Благодаря малому электрическому сопротивлению медь является главным металлом электротехники: больше половины всей получаемой меди идёт на производство электрических проводов для высоковольтных передач и слаботочных кабелей. Даже ничтожные примеси в меди приводят к повышению её электрического сопротивления и большим потерям электроэнергии. Медной жестью обшивают корпуса кораблей. Высокая теплопроводность и сопротивление коррозии позволяют изготовлять из меди детали теплообменников, холодильников, вакуумных аппаратов, трубопроводов для перекачки масел и топлив и пр. Широко используется медь и в гальванотехнике при нанесении защитных покрытий на стальные изделия. Так, например, при никелировании или хромировании стальных предметов на них предварительно осаждают медь; в этом случае защитное покрытие служит дольше и эффективней. Медь используют также в гальванопластике (т. е. при тиражировании изделий методом получения их зеркального отображения), например при изготовлении металлических матриц для печатания денежных купюр, воспроизведение скульптурных изделий.




Бронза. Оружие из бронзы июньского времени в Китае. Древние металлурги научились добывать медь из руд и вносить в неё добавки, улучшающие свойства сплава. Так, смешав медь с оловом, они получили бронзу. Это был настолько важный этап в человеческой истории, что мы называем его бронзовым веком. Необычно простой способ получения сплава(пламя костра расплавляет смесь олова и меди) позволил мастерам изготовлять из него различные инструменты, орудия труда и, конечно же, оружие. Бронза твёрже меди, устойчива на воздухе, хорошо перерабатывается в различные изделия, но более легкоплавка. Особенно качественные сплавы умели получать древние греки, жители Месопотамии, японские мастера. Поэтому совсем не случайно возвышение и закат государств были непосредственно связаны со степенью развития металлургии.


Изделия из бронзы были в ходу у древних египтян, ассирийцев, этрусков. Прекрасные бронзовые статуи отливали в Греции и Риме; многие из них сохранились до настоящего времени, например знаменитая конная статуя Марка Аврелия в Риме или одно из семи чудес света Колосс Родосский. Для скульптурных произведений, стоящих на открытом воздухе, особенно в местах с влажным климатом, бронза предпочтительна потому, что со временем на её поверхности появляется плотный зеленовато-коричневый налёт- патина, которая защищает металл от дальнейшего окисления. Также бронзой оковывали щиты римских легионеров. Щит римского легионера.


Именно из бронзы отлиты воспетый А. С. Пушкиным "Медный всадник" в Санкт-Петербурге и памятник Минину и Пожарскому на Красной площади в Москве. Благодаря особым механическим свойствам и хорошим литейным качествам бронза - идеальный металл для отливки колоколов, обладающих громким и красивым звуком. Всем известен гигантский "Царь-колокол" в Московском Кремле весом почти 202 тонны, отлитый в годах русскими мастерами И. Ф. и М. Ф. Матрониными. Из бронзы в старину делали также пушки; самая большая из них "Царь-пушка" (39,3 т) предназначалась для обороны Московского Кремля и была отлита мастером А. Чоховым в 1586 г. Э. М. Фальконе. «Медный всадник». Санкт-Петербург. Царь-колокол был отлит по приказу императрицы Анны Иоанновны в гг. московскими литейщиками Иваном Моториным и его сыном Михаилом вместо разбившегося в г. во время пожара Большого Успенского колокола.


Царь-пушка. Мастер Андрей Чохов год. Памятник мещанину Кузьме Минину и князю Дмитрию Пожарскому создан по проекту художника И. П. Мартоса и отлит из бронзы литейным мастером Академии Художеств В. П. Екимовым, открыт 20 февраля 1818.




И сейчас из бронзы отливают скульптуры, изготавливают люстры, канделябры, подсвечники, а также детали различных механизмов (например, подшипники). Как и много веков назад, для получения бронзы медь и медный лом сплавляют с оловом. Только уже не в земляных, а в современных электрических печах. Чтобы при плавлении медь и олово не окислялись, а бронза отличалась особой прочностью, в шихту перед литьём добавляют соединения фосфора. Из-за дефицита олова и его высокой цены оловянная бронза постепенно вытесняется другими бронзами, гл. обр. алюминиевой. Алюминиевая бронза, содержащая до 11% Аl, обладает хорошими механическими свойствами, устойчива в морской воде и даже в разбавленной соляной кислоте. Этот очень прочный сплав идёт на изготовление трубопроводов, деталей паровых турбин и авиационных двигателей и др.Из алюминиевой бронзы в России чеканили "медные" монеты с 1926 по 1957 гг.Из свинцовой бронзы делают подшипники для тепловозов, судовых двигателей, водяных турбин. Исключительно прочна и долговечна бериллиевая бронза, которая благодаря упругим свойствам служит материалом для пружин, практически не знающих усталости (выдерживают до 20 миллионов циклов нагрузки). Санкт-Петербург. Бронзовый памятник Остапу Бендеру на Итальянской улице год. Скульптор Альберт Чаркин.


Латунь. Латунь- это сплав меди с цинком. Хотя цинк был открыт только в средние века, латунь была известна ещё древним римлянам, которые получали её плавкой медных руд с цинковыми без доступа воздуха. Для придания латуни нужных свойств в её состав в её состав часто вводят в небольших количествах такие легирующие металлы, как Al, Mn, Ni, Fe и др. Латунь плавится легче, чем медь, но она твёрже её. Латунь хорошо куётся, прокалывается в листы, штампуется, вытягивается в проволоку и отлично полируется(до зеркального блеска). Изделия из неё поддаются закалке. При необходимости латунь можно наносить на поверхность других металлов электрохимическим методом. Немаловажно, что латунь значительно дешевле меди. Используют латунь в машиностроении и электротехнике; из неё делают детали различных механизмов, водопроводные и газовые краны, радиаторные трубы, дверные ручки, петли патронные гильзы. Латунь с добавкой алюминия по внешнему виду похожа на золото, из неё изготовляют значки, эмблемы, медали. Если цинка в сплаве относительно мало (до 18%), латуни имеют красноватый оттенок.Например, латунь с содержанием до 10% цинка называется томпаком; из этого сплава с 1961 по 1991 в России чеканили «медные» монеты, достоинством от 1 до 5 копеек. Сплавы с большим содержанием цинка (до 50%) - жёлтого цвета и называются собственно латунями. Они прекрасно обрабатываются вальцеванием, прессованием и протяжкой, из них получают добротные отливки.


Другие сплавы. Из других сплавов отметим монель-металл (% меди, % никеля и цинка с добавками свинца, олова и железа) раньше применялся для изготовления столовых приборов и украшений "под серебро". Благодаря своей высокой коррозийной стойкости и прочности, хорошей пластичности сейчас применяется в химической, судостроительной, медицинской, нефтяной, текстильной и др. отраслях промышленности. А вот константан, манганин, хромель и копель почти не изменяют своего сопротивления при значительных колебаниях температуры и поэтому верой и правдой служат в электротехнике для изготовления термопар – очень чувствительных приборов, измеряющих температуру. Также из хромеля и копеля изготавливаются компенсационные провода, реостаты, детали нагревательных устройств. Из мангонина изготовляют эталонные резисторы и элементы измерительных приборов.


СТРОЕНИЕ.

  • Медь-элемент побочной подгруппы
  • Строение атома:

12 С u 1 s 2 |2s 2 2p 6 |3s 2 3p 6 3d 10 |4s 1 |


  • Медь - один из первых металлов, широко освоенных человеком из-за сравнительной доступности для получения и малой температуры плавления.
  • Латинское название меди Cuprum произошло от названия острова Кипр.
  • Известно, что при возведении пирамиды Хеопса использовались медные инструменты.

Пирамида Хеопса


Нахождение в природе.

Медь встречается в природе в основном в связанном виде и входит в состав следующих минералов: Cu 2 S(медный блеск) , CuFeS 2 (медный колчедан), (CuOH) 2 CO 3 (малахит) . Содержание в земной коре 0,0 1 процент.


Нахождение в природе.

  • Нередко встречаются месторождения меди в осадочных породах - медистые песчаники и сланцы.
  • Содержание меди в руде составляет

от 0,3 до 1,0 %.

Медь в соединениях

Самородный вид


Физические свойства

  • Медь – металл светло-розового цвета, тягучий, вязкий, легко прокатывается. Температура плавления 1083 градуса по Цельсию. Отличный проводник электрического тока. Плотность 8,92. Медь обладает высокой тепло и электропроводностью, занимает второе место по электропроводности после серебра.

Получение.

  • Процесс получения меди весьма сложный. Упрощенно процесс ее производства из медного блеска отразить можно так:

Cu 2 S+3O 2 2Cu 2 O+2SO 2

затем оксид меди вступает в реакцию оставшимся медным блеском – и получается медь.

2 Cu 2 O+Cu 2 S 6Cu+SO 2


Химические свойства.

В сухом воздухе и при обычной температуре медь почти не изменяется. А при повышенной температуре медь может вступать в реакции как с простыми так и с сложными веществами.


Взаимодействие с простыми веществами.

  • С кислородом

2 Cu+O 2 2CuO оксид меди(2)

  • С серой

Cu+S CuS сульфид меди (2)

  • С галогенами

Cu+Cl 2 CuCl 2 хлорид железа (2)


Взаимодействие со сложными веществами.

Находясь в ряду напряжений левее водорода медь не вытесняет водород из разбавленных растворов соляной и серной кислот.

  • Взаимодействие с H 2 SO 4 (конц.)

Cu+2H 2 SO 4 (конц.) CuSO 4 +SO 2 +2H 2 O

  • Взаимодействие с HNO 3 (разб.)

3С u+8HNO 3 (разб.) 3Cu(NO 3) 2 +2NO 2 +4H 2 O

  • Взаимодействие с HNO 3 (конц.)

Cu+4 HNO 3 (конц.) Cu(NO 3) 2 +2NO 2 +H 2 O


Соединения меди.

  • CuSO 4 – сульфат меди (белый порошок).
  • CuSO 4 *5H 2 O – медный купорос (голубой порошок).
  • CuCl 2 *2H 2 O – хлорид меди (темно-зеленый кристалл).
  • Cu(NO 3) 2 *3H 2 O – нитрат меди (синие кристаллы).

1. Оксид меди (2) получение:

черный порошок, проявляет свойства основного оксида

взаимодействует с кислотами:

Cu+2HCl CuCl 2 +H 2 O

2. Гидроксид Cu(OH) 2 получение:

CuCl 2 +2NaOH 2NaCl+Cu(OH) 2

проявляет свойства основания, взаимодействует с кислотами:

Cu(OH) 2 +2HCl CuCl 2 +2H 2 O


Применение.

Чистая медь используется в электротехнической промышленности для изготовления электрических проводов, кабелей и в теплообменных аппаратах. Она входит в состав различных сплавов. Например, медный купорос необходим для борьбы с вредителями и болезнями растений. А гидроксидом меди определяют альдегидную группу в органических соединениях.


Применение

  • Медь широко применяется в электротехнике для изготовления силовых кабелей, проводов или других проводников.
  • Теплопроводимость меди позволяет применять её в различных теплоотводных устройствах: радиаторах охлаждения, к ондиционироввания и отопления.

Медный кабель.

Медный радиатор.


  • Медь широко используется для производства медных труб применяющихся для транспортировки жидкостей и газов
  • В разнообразных областях техники широко используются сплавы с использованием меди, самыми широко распространёнными из которых являются бронза и латунь.
  • Для деталей машин используют сплавы меди с цинком, оловом, алюминием, кремнием и др.

Медные трубы.

  • Медноникелевые сплавы, широко используются в судостроении.

Сплавы меди.

Метизы (Детали машин)


Ювелирные сплавы

  • В ювелирном деле часто используются сплавы меди с золотом для увеличения прочности изделий к деформациям и истиранию, так как чистое золото - очень мягкий металл и нестойко к этим механическим воздействиям.

Широко применяется медь в архитектуре. Кровли и фасады из тонкой листовой меди из-за автозатухания процесса коррозии медного листа служат безаварийно по 100-150 лет.

Медная кровля.

Медный фасад.

Медные водосточные трубы.


Биологическая роль

  • Медь - необходимый элемент для высших растений и животных.
  • После усваивания меди кишечником она транспортируется к печени с помощью альбумина.
  • Здоровому взрослому человеку необходимо поступление меди в количестве 0,9 мг в день. При недостатке меди снижается активность ферментных систем и замедляется белковый обмен, в результате замедляется и нарушается рост костных тканей.

Продукты, богатые медью.


Влияние на экологию

  • При открытом способе добычи меди, после её прекращения карьер становится источником токсичных веществ. Самое токсичное озеро в мире - Беркли Пит - образовалось в кратере медного рудника. Оно находится в Штате Монтана в США.

в 1984 году

в 2008 году


Материал взят из:

  • Фотографии: Google
  • Текст: Википедия
  • http://ppt4web.ru/khimija