Мини ядерный реактор купить. Портативная АЭС Hyperion поступила в продажу

Трагедии на Чернобыльской АЭС и АЭС «Фукусима» пошатнули уверенность человечества в том, что за атомной энергетикой будущее. Некоторые из стран, такие, как Германия, вообще пришли к выводу, что от АЭС следует отказаться вовсе. Но вопрос использования атомной энергетики очень серьезный и крайностей в выводах не терпит. Тут надо четко оценить все плюсы и минусы, и скорее – искать золотую середину и альтернативные решения использования атома.

В качестве источников энергии на Земле сегодня используются органические ископаемые, нефть, газ; возобновляемые источники энергии – солнце, ветер, древесное топливо; гидроэнергия – реки и всевозможные пригодные для этих целей водоемы. Но запасы нефти и газа истощаются, соответственно, дорожает и энергия, полученная с их помощью. Энергия, получаемая с помощью ветра и солнца – достаточно затратное удовольствие, в силу дороговизны солнечных и ветровых электростанций. Возможности энергии водоемов тоже очень ограничены. Поэтому многие ученые все же приходят к выводу, что если в России закончатся запасы нефти и газа, альтернативы отказа от ядерной энергетики, как источника энергии, очень малы.Доказано, чтомировые ресурсы ядерного горючего, такого, как плутоний и уран во много раз превышают энергоресурсы природных запасов органического топлива. Работа же самих АЭС имеет ряд преимуществ перед другими электростанциями. Их можно строить везде, независимо от энергетических ресурсов района, топливо АЭС отличается очень большим содержанием энергии, эти станции не делают в атмосферу вредных выбросов, таких как ядовитые вещества и парниковые газы, и стабильно дают самую дешевую энергию.В мировом рейтинге по уровню ТЭС Россия очень сильно отстает, а по показателям АЭС – мы являемся одними из первых, поэтому для нашей страны отказ от атомной энергетики может грозить большой экономической катастрофой. Тем более именно в России особенно актуальны отдельные вопросы в развитии атомной энергетики – такие, как строительство мини АЭС. Почему? Тут все очевидно и просто.

Проект одной из АСММ — «Унитерм»

Атомные реакторы малой мощности (100-180 МВт) уже несколько десятков лет успешно используются в судоходстве нашей страны. В последнее время все чаще начинают говорить о необходимости их использования для обеспечения энергией отдаленных районов России. Тут малые АЭС смогут решить проблему энергоснабжения, которая всегда стояла остро во многих труднодоступных регионах. Две трети России – зона децентрализованного энергоснабжения. Прежде всего, это Крайний Север и Дальний Восток. Уровень жизни здесь во многом зависит от энергообеспечения. Кроме того, данные регионы представляют собой большую ценность в силу большого сосредоточения полезных ископаемых. Их добыча не развивается или останавливается зачастую именно по причине большой затратности в сфере энергетики и транспорта. Энергия здесь поступает от автономных источников, использующих органическое топливо. А завоз такого топлива в труднодоступные районы обходится очень недешево по причине необходимых огромных объемов и большого расстояния. Например, в республике Саха в Якутии, в силу разорванности энергетической системы на маломощные изолированные участки, стоимость электроэнергии больше в 10 раз, чем на «большой земле». Совершенно ясно, что для большой территории с низкой плотностью населения проблема развития энергетики не может решиться крупным сетевым строительством. Атомные станции малой мощности (АСММ) — один из самых реальных выходов из ситуации в данном вопросе. Ученые уже насчитали 50 регионов в России, где нужны подобные станции. Они, конечно, проиграют по стоимости электроэнергии большому энергоблоку (строить его здесь просто нерентабельно), но выиграют у источника на органическом топливе. По подсчетам специалистов АСММ могут сэкономить до 30% стоимость электроэнергии в труднодоступных регионах. Маленькие объемы расходуемого топлива, удобства в перемещении, небольшие трудозатраты по вводу в работу, минимум обслуживающего персонала – эти характеристики делают АСММ незаменимыми энергоисточниками в дальних районах.

Незаменимость АСММ уже давно осознали и во многих других странах мира. Японцы доказали, что подобные станции будут очень эффективны в условиях мегаполисов. Работы одного отдельного такого устройства достаточно для того, чтобы снабдить энергией определенное количество жилых домов или небоскребов. Маленьким реакторам не требуется дорогое и подчас отсутствующее место для их размещения в мегаполисе. Также, японские разработчики уверяют, что эти реакторы могут компенсировать пиковые нагрузки в крупных городских зонах. Японская компания Toshibа уже длительное время разрабатывает проект АСММ — Toshiba 4S. Срок его эксплуатации по прогнозам разработчиков – 30 лет без перезагрузки топлива, мощность – 10 МВт, габариты — 22 на 16 на 11 метров, топливо такой мини-АЭС — металлический сплав плутония, урана и циркония. Эта станция не требует постоянного обслуживания, а нуждается лишь в эпизодическом контроле. Такой реактор японцы предлагают использовать и при добыче нефти, а их серийный выпуск хотят наладить к 2020 году.

Не отстают от Японии и американские ученые. В течение нескольких лет они обещают выпустить в продажу небольшой ядерный реактор, который будет обеспечивать энергией небольшие поселки. Мощность такой станции – 25 МВт, по размеру она немногим больше собачьей конуры. Электроэнергию эта мини-АЭС будет вырабатывать круглосуточно и ее стоимость за 1 киловатт-час составит всего 10 центов.Надежность тоже на высшем уровне: помимо стального корпуса, Hyperion закатан в бетон.Менять ядерное топливо здесь смогут только специалисты, и делать это надо будет каждые 5-7 лет. Выпускающая компания Hyperion, уже получила лицензию на выпуск таких ядерных реакторов. Приблизительная стоимость станции 25 миллионов долларов. Для городка, хотя бы с 10-ю тысячами домов – совсем недорого.

Что касается России, то здесь над созданием малых АЭС работают достаточно давно. Учеными Курчатовского института 30 лет назад была разработана мини – АЭС «Елена», которая вообще не нуждается в обслуживающем персонале. Ее прототип функционирует на территории института до сих пор. Электрическая мощность станции – 100 КВт., она представляет собой цилиндр весом в 168 тонн, диаметром — 4,5 и высотой — 15 метров. «Елена» устанавливается в шахте на глубине 15-25 метров и закрывается бетонными перекрытиями. Ее электроэнергии хватит на обеспечение теплом и светом небольшого поселка. В России разработано еще несколько проектов, подобных «Елене». Все они соответствуют необходимым требованиям надёжности, безопасности, недоступности для посторонних, нераспространении ядерных материалов и т.д., но требуют немалых строительных работ при установке и не соответствуют критериям мобильности.

В 60-е годы прошла испытания малая передвижная станция «ТЭС-3». Она состояла из четырех гусеничных самоходных транспортеров, поставленных на усиленную базу танка Т-10. На двух транспортерах были размещены парогенератор и водяной реактор, на оставшихся поместили турбогенератор с электрической частью и систему управления станцией. Мощность такой станции составила -1,5 МВт.

В 80-е годы в Беларуси разработали малую АЭС на колесах. Станцию назвали «Памир» и поставили на шасси МАЗ-537 «Ураган». Ее составили четыре автофургона, которые были соединены газовыми шлангами высокого давления. Мощность «Памира» составила 0,6 МВт. Станция в первую очередь предназначалась для работы в широком диапазоне температур, именно поэтому была оснащена газоохлаждаемым реактором. Но, произошедшая как раз в эти годы Чернобыльская авария, «автоматом» уничтожила проект.

Все эти станции имели определенные проблемы, которые препятствовали их широкому внедрению в производство. Во-первых, невозможность обеспечить качественную защиту от излучения по причине большого веса реактора и ограниченной грузоподъемности транспорта. Во-вторых, эти мини-АЭС работали на высокообогащенном ядерном топливе «оружейного» качества, что противоречило международным нормам, которые запрещали распространение ядерного оружия. В-третьих, для самоходных атомных станций было сложно создать защиту от дорожных происшествий и террористов.

Весь спектр требований к АСММ удовлетворила плавучая атомная теплоэлектростанция. Она была заложена в Санкт-Петербурге в 2009 году. Данная мини-АЭС состоит из двух реакторных установок на гладкопалубном несамоходном судне. Срок ее эксплуатации – 36 лет, в течение которых, через каждые 12 нужно будет перезагружать реакторы. Станция может стать эффективным источником электричества и тепла для труднодоступных регионов страны. Еще одна из ее функций – опреснение морской воды. В сутки она может выдавать от 100 до 400 тысяч тонн. В 2011 году проект получил положительное заключение государственной экологической экспертизы. Не позднее 2016 года плавучую АЭС планируют разместить на Чукотке. Росатом ожидает от этого проекта больших зарубежных заказов.

Также недавно стало известно, что одна из подконтрольных Олегу Дерипаске компаний — «Евросибэнерго», вместе с Росатомом объявила об организации предприятия «АКМЭ-Инжиниринг», которое будет работать над созданием АСММ и заниматься их продвижением на рынке. В работе этих станций хотят использовать реакторы набыстрых нейтронах со свинцововисмутовым теплоносителем, которыми в советское время были оснащены атомные подлодки. Обеспечивать энергией они призваны отдаленные районы, неподключенные к электросетям. Организаторы предприятия планируют заполучить 10-15% мирового рынка мини-АЭС. В успехе данной кампании аналитиков заставляет сомневаться заявленная стоимость станции, которая по прогнозам «Евросибэнерго» будет равняться стоимости ТЭЦ такой же мощности.

Успех малых АЭС на рынке мировой энергетики предвидеть несложно. Необходимость их присутствия там очевидна. Решаемы и вопросы с усовершенствованием этих источников энергии и приведением в соответствие к необходимым параметрам. Глобальной лишь остается проблема стоимости, которая на сегодняшний день в 2-3 раза больше АЭС в 1000 МВт. Но уместно ли такое сравнение в данном случае? Ведь у АСММ совершенно другая ниша в использовании – они должны обеспечивать автономных потребителей. Никто же из нас не додумается сравнивать стоимость киловатт, расходуемых часами, работающими от батарейки, и микроволновкой, которая запитана от розетки.

1. Свободнопоршневой двигатель Стирлинга работает от нагревания «атомным паром» 2. Индукционный генератор дает около 2 Вт электроэнергии для питания лампы накаливания 3. Характерное голубое свечение — это черенковское излучение электронов, выбитых из атомов гамма-квантами. Может служить в качестве отличного ночника!

Для детей от 14 лет Юный исследователь сможет самостоятельно собрать пусть и маленький, но настоящий ядерный реактор, узнать, что такое мгновенные и запаздывающие нейтроны, и увидеть динамику разгона и торможения цепной ядерной реакции. Несколько простых опытов с гамма-спектрометром позволят разобраться с наработкой различных продуктов деления и поэкспериментировать с воспроизводством топлива из модного ныне тория (кусочек сульфида тория-232 прилагается). Входящая в комплект книга «Основы ядерной физики для самых маленьких» содержит описание более 300 опытов с собранным реактором, так что простор для творчества огромен

Исторический прототип Набор Atomic Energy Lab (1951) давал возможность школьникам приобщиться к самой передовой области науки и технологии. Электроскоп, камера Вильсона и счетчик Гейгера-Мюллера позволяли провести множество интереснейших опытов. Но, конечно, не настолько интересных, как сборка действующего реактора из российского набора «Настольная АЭС»!

В 1950-х годах, с появлением атомных реакторов, перед человечеством, казалось бы, замаячили блестящие перспективы решения всех энергетических проблем. Инженеры-энергетики проектировали атомные электростанции, судостроители — атомные электроходы, и даже автоконструкторы решили присоединиться к празднику и использовать «мирный атом». В обществе возник «атомный бум», и промышленности стало не хватать квалифицированных специалистов. Требовался приток новых кадров, и была развернута серьезная образовательная компания не только среди студентов университетов, но и среди школьников. Например, A.C. Gilbert Company выпустила в 1951 году детский набор Atomic Energy Lab, содержащий несколько небольших радиоактивных источников, необходимые приборы, а также образцы урановой руды. Этот «наисовременнейший научный набор», как было написано на коробке, позволял «юным исследователям провести более 150 захватывающих научных экспериментов».

Кадры решают все

За прошедшие полвека ученые получили несколько горьких уроков и научились строить надежные и безопасные реакторы. И хотя сейчас в этой области наблюдается спад, вызванный недавней аварией на Фукусиме, вскоре он вновь сменится подъемом, и АЭС по‑прежнему будут рассматриваться как чрезвычайно перспективный способ получения чистой, надежной и безопасной энергии. Но уже сейчас в России чувствуется дефицит кадров, как ив 1950-х. Чтобы привлечь школьников и повысить интерес к атомной энергетике, Научно-производственное предприятие (НПП) «Экоатомконверсия», взяв пример с A.C. Gilbert Company, выпустила образовательный набор для детей от 14 лет. Разумеется, наука за эти полвека не стояла на месте, поэтому, в отличие от своего исторического прототипа, современный набор позволяет получить намного более интересный результат, а именно — собрать на столе самый настоящий макет атомной электростанции. Разумеется, действующий.

Грамотность с пеленок

«Наша компания родом из Обнинска- города, где атомная энергия знакома и привычна людям чуть ли не с детского сада, — объясняет «ПМ» научный руководитель НПП «Экоатомконверсия» Андрей Выхаданко. — И все понимают, что бояться ее совершенно не надо. Ведь по‑настоящему страшна лишь неизвестная опасность. Поэтому мы и решили выпустить этот набор для школьников, который позволит им вдоволь поэкспериментировать и изучить принципы работы атомных реакторов, не подвергая себя и окружающих серьезному риску. Как известно, знания, полученные в детстве, самые прочные, так что выпуском этого набора мы надеемся значительно понизить вероятность повторения Чернобыля или

Фукусимы в будущем».

Ненужный плутоний

За годы работы множества АЭС скопились тонны так называемого реакторного плутония. Он состоит в основном из оружейного Pu-239, содержащего около 20% примеси других изотопов, в первую очередь Pu-240. Это делает реакторный плутоний абсолютно непригодным для создания ядерных бомб. Отделение примеси оказывается весьма сложным, так как разница масс между 239-м и 240-м изотопами — всего 0,4%. Изготовление ядерного топлива с добавкой реакторного плутония оказалось технологически сложным и экономически невыгодным, так что этот материал остался не у дел. Именно «бросовый» плутоний и использован в «Наборе юного атомщика», разработанном НПП «Экоатомконверсия».

Как известно, для начала цепной реакции деления ядерное топливо должно иметь определенную критическую массу. Для шара из оружейного урана-235 она составляет 50 кг, из плутония-239 — только 10. Оболочка из отражателя нейтронов, например бериллия, может снизить критическую массу в несколько раз. А использование замедлителя, как в реакторах на тепловых нейтронах, снизит критическую массу более чем в десять раз, до нескольких килограммов высокообогащенного U-235. Критическая масса Pu-239 и вовсе составит сотни граммов, и именно такой сверхкомпактный реактор, умещающийся на столе, разработали в «Экоатомконверсии».

Что в сундучке

Упаковка набора скромно оформлена в черно-белых тонах, и лишь неяркие трехсегментные значки радиоактивности несколько выделяются на общем фоне. «Никакой опасности на самом деле нет, — говорит Андрей, указывая на слова «Совершенно безопасно!», написанные на коробке. — Но таковы требования официальных инстанций». Коробка тяжеленная, что неудивительно: в ней находится герметичный транспортировочный свинцовый контейнер с тепловыделяющей сборкой (ТВС) из шести плутониевых стержней с циркониевой оболочкой. Помимо этого набор включает внешний корпус реактора из термостойкого стекла с химической закалкой, крышку корпуса со стеклянным окном и гермовводами, корпус активной зоны из нержавеющей стали, подставку под реактор, управляющий стержень-поглотитель из карбида бора. Электрическая часть реактора представлена свободнопоршневым двигателем Стирлинга с соединительными полимерными трубками, маленькой лампой накаливания и проводами. В комплект также входят килограммовый пакет с порошком борной кислоты, пара защитных костюмов с респираторами и гамма-спектрометр со встроенным гелиевым детектором нейтронов.

Постройка АЭС

Сборка действующего макета АЭС по прилагаемому руководству в картинках очень проста и занимает менее получаса. Надев стильный защитный костюм (он нужен только на время сборки), вскрываем герметичную упаковку с ТВС. Затем вставляем сборку внутрь корпуса реактора, накрываем корпусом активной зоны. Под конец защелкиваем сверху крышку с гермовводами. В центральный нужно вставить до конца стержень-поглотитель, а через любой из двух других заполнить активную зону дистиллированной водой до черты на корпусе. После заполнения к гермовводам подключаются трубки для пара и конденсата, проходящие через теплообменник двигателя Стирлинга. Сама АЭС на этом закончена и готова к запуску, остается лишь поместить ее на специальную подставку в аквариум, заполненный раствором борной кислоты, который отлично поглощает нейтроны и защищает юного исследователя от нейтронного облучения.

Три, два, один — пуск!

Подносим гамма-спектрометр с датчиком нейтронов вплотную к стенке аквариума: небольшая часть нейтронов, не представляющая угрозы для здоровья, все-таки выходит наружу. Медленно поднимаем регулировочный стержень до начала быстрого роста потока нейтронов, означающего запуск самоподдерживающейся ядерной реакции. Остается только дождаться выхода на нужную мощность и на 1 см по меткам вдвинуть стержень назад, чтобы скорость реакции стабилизировалась. Как только начнется кипение, в верхней части корпуса активной зоны появится прослойка пара (перфорация в корпусе не позволяет этой прослойке оголить плутониевые стержни, что могло бы привести к их перегреву). Пар по трубке идет вверх, к двигателю Стирлинга, там он конденсируется и стекает по выходной трубке вниз внутрь реактора. Разность температур между двумя концами двигателя (один нагревается паром, а другой охлаждается комнатным воздухом) преобразуется в колебания поршня-магнита, а тот, в свою очередь, наводит переменный ток в окружающей двигатель обмотке, зажигая атомный свет в руках юного исследователя и, как надеются разработчики, атомный интерес в его сердце.

Примечание редакции: данная статья опубликована в апрельском номере журнала и является первоапрельским розыгрышем.

Можно ли собрать реактор на кухне? Многие задавались этим вопросом в августе 2011 года, когда история Хэндла оказалась на передовицах газет. Ответ зависит от целей экспериментатора. Полноценную вырабатывающую электричество «печку» в наши дни создать сложно. Тогда как информация о технологиях с годами становилась доступнее, добывать необходимые материалы становилось все сложнее и сложнее. Но если энтузиаст просто желает удовлетворить свое любопытство, проведя хоть какую-нибудь ядерную реакцию, - перед ним открыты все пути.

Самым известным владельцем домашнего реактора, вероятно, является «Радиоактивный бойскаут» американец Дэвид Хан. В 1994 году в возрасте 17 лет он собрал установку в сарае. До появления «Википедии» оставалось семь лет, так что школьник в поисках нужной ему информации обращался к ученым: писал им письма, представляясь учителем или студентом.

Реактор Хана так и не достиг критической массы, но бойскаут успел получить достаточно высокую дозу радиации и спустя много лет оказался непригодным для желанной работы в сфере атомной энергетики. Зато сразу после того, как полиция заглянула в его сарай, а агентство по защите окружающей среды разобрало установку, «Бойскауты Америки» присудили Хану звание «Орел».

В 2011 году швед Ричард Хэндл попытался построить реактор-размножитель. Такие устройства используются для производства ядерного топлива из более распространенных радиоактивных изотопов, не подходящих для обычных реакторов.

«Мне всегда была интересна ядерная физика. Я купил в интернете всякое радиоактивное барахло: стрелки старых часов, детекторы дыма и даже уран и торий»,

Рассказал он РП.

Неужели даже уран можно купить в сети? «Да, - подтверждает Хэндл.. - По крайней мере так было два года назад. Сейчас в том месте, где я покупал, его убрали».

Оксид тория нашелся в деталях старых керосиновых ламп и сварочных электродах, уран - в декоративных стеклянных шариках. В реакторах-размножителях топливом чаще всего служит торий-232 или уран-238. При бомбардировке нейтронами первый превращается в уран-233, а второй - в плутоний-239. Эти изотопы уже пригодны для реакций деления, но, судя по всему, на этом экспериментатор собирался остановиться.

Помимо топлива для реакции нужен был источник свободных нейтронов.

«В детекторах дыма есть небольшое количество америция. У меня их было штук 10–15 - из них и доставал»,

Поясняет Хэндл.

Америций-241 излучает альфа-частицы - группы из двух протонов и двух нейтронов, - но в купленных в интернете старых датчиках его оказалось слишком мало. Альтернативным источником стал радий-226 - до 1950-х годов им покрывали стрелки часов, чтобы те светились. Они все еще продаются на eBay, хотя вещество крайне токсично.

Чтобы получить свободные нейтроны, источник альфа-излучения смешивают с металлом - алюминием или бериллием. В этом месте у Хэндла и начались проблемы: он попытался смешать радий, америций и бериллий в серной кислоте. Позднее фотография залитой химикатами электроплиты из его блога разошлась по местным газетам. Но на тот момент до появления полиции на пороге экспериментатора оставалось еще два месяца.

Неудачная попытка Ричарда Хэндла получить свободные нейтроны. Источник: richardsreactor.blogspot.seНеудачная попытка Ричарда Хэндла получить свободные нейтроны. Источник: richardsreactor.blogspot.se

«Полиция пришла за мной еще до того, как я начал строить реактор. Но с того момента, как я стал собирать материалы и писать в блог о своем проекте, прошло примерно полгода», - поясняет Хэндл. Его заметили, только когда он сам попытался узнать у властей, легален ли его эксперимент, при том что каждый свой шаг швед документировал в публичном блоге. «Не думаю, что что-нибудь произошло бы. Я планировал всего лишь короткую ядерную реакцию», - добавил он.

Хэндла арестовали 27 июля, через три недели после письма в Службу радиационной безопасности. «В тюрьме я провел всего несколько часов, потом было слушание, и меня выпустили. Изначально меня обвиняли по двум эпизодам нарушения закона о радиационной безопасности, и по одному - законов о химическом оружии, об оружейных материалах (у меня были некоторые яды) и об окружающей среде», - рассказал экспериментатор.

Возможно, роль в деле Хэндла сыграли внешние обстоятельства. 22 июля 2011 года в Норвегии совершил теракты Андерс Брейвик. Неудивительно, что шведские власти жестко отреагировали на желание мужчины средних лет с восточными чертами лица построить ядерный реактор. К тому же в его доме полиция нашла рицин и полицейскую форму, и поначалу его подозревали даже в терроризме.

Кроме того, в Facebook экспериментатор называет себя «Муллой Ричардом Хэндлом». «Это просто наша внутренняя шутка. Мой отец работал в Норвегии, там есть очень известный и противоречивый мулла Крекар, собственно, об этом и шутка», - объясняет физик. (Основатель исламистской группировки «Ансар аль-Ислам» признан норвежским Верховным судом угрозой национальной безопасности и находится в списке террористов ООН, но не может быть выслан, поскольку получил статус беженца в 1991 году - на родине в Ираке ему грозит смертная казнь. - РП).

Хэндл, находясь под следствием, вел себя не слишком осторожно. Это окончилось для него еще и обвинением в угрозе убийством. «Это совсем другая история, то дело уже закрыто. Я просто написал в интернете, что у меня есть план убийства, который я приведу в исполнение. Потом приехала полиция, меня допросили и после слушания снова выпустили. Месяца через два дело закрыли. Не хочу углубляться в то, о ком я писал, но просто есть люди, которых я не люблю. Кажется, я был пьян. Скорее всего, полиция обратила на это внимание только потому, что я проходил по тому делу с реактором», - объясняет он.

Суд над Хэндлом закончился в июле 2014 года. Трое из пяти первоначальных обвинений были сняты.

«Меня приговорили только к штрафам: признали виновным в одном нарушении закона о радиационной безопасности и одном - закона об окружающей среде»,

Объясняет он. За инцидент с химикатами на плите он должен государству примерно €1,5 тысячи.

В ходе процесса Хэндлу пришлось пройти психиатрическую экспертизу, но ничего нового она не выявила. «Я не слишком хорошо себя чувствую. Ничего не делал лет 16. Мне присвоили инвалидность из-за психических расстройств. Как-то я снова попытался начать учиться, читать, но уже через два дня пришлось бросить», - говорит он.

Ричарду Хэндлу - 34 года. В школе он обожал химию и физику. Уже в 13 лет делал взрывчатку, собирался пойти по стопам отца, став фармацевтом. Но в 16 лет с ним что-то случилось: Хэндл стал вести себя агрессивно. Сначала у него диагностировали депрессию, потом - параноидное расстройство. В своем блоге он упоминает параноидальную шизофрению, но оговаривается, что за 18 лет ему ставили около 30 разных диагнозов.

О научной карьере пришлось забыть. Большую часть жизни Хэндл вынужден принимать лекарства - галоперидол, клоназепам, алимемазин, зопиклон. Он с трудом воспринимает новую информацию, избегает людей. Четыре года проработал на заводе, но и оттуда пришлось уйти по инвалидности.

После истории с реактором Хэндл пока не придумал, чем заняться. В блоге больше не будет сообщений про яды и атомные бомбы - там он собирается выкладывать свои картины. «Никаких особых планов у меня нет, но я все еще интересуюсь ядерной физикой и продолжу читать», - обещает он.

Ученые института ядерной физики имени Будкера в понедельник представили общественности свою новейшую разработку – домашний энергетический ядерный реактор МАЭС-2014. Впервые в мире специалистам удалось достичь максимальной безопасности при сверхкомпактных размерах устройства.

Как рассказал руководитель проекта, академик Яков Иоффе, устройство относится к классу так называемых реакторов с бегущей волной (Traveling-Wave Reactor). Такое название данный тип энергетических установок получил из-за серьезных отличий от классической схемы ректора – здесь ядерная реакция происходит в очень ограниченном регионе активной зоны, который постепенно перемещается и ведет себя как волна. Разработки такого реактора начались в США в середине 2000-х годов, однако добиться прогнозируемого поведения устройства американские специалисты не смогли.

Новосибирский реактор работает на низкообогащенном уране, что существенно снижает себестоимость установки. Замедлителем в реакторе выступает обычная вода, устройство управляется регулирующим стержнем из карбида бора. Из-за особенностей конструкции критическая масса урана, необходимая для начала реакции, снижена более чем в десять раз. Это, а также низкое выделение тепла, позволило добиться сверхкомпактного размера. Реактор вполне может поместиться в подвале или гараже, отмечают разработчики.

Испытания показали, что установка способна выдавать электрическую мощность в 0,5 мегаватт, что хватит на несколько десятков домохозяйств или малое промышленное предприятие. Цена ядерного электричества также вполне доступна – себестоимость киловатт-часа находится на уровне двух рублей.

Особо подчеркивается, что для управления реактором не нужно будет получать специальные допуски. Устройство уже сейчас имеет двойную систему безопасности. При критических изменениях в корпусе реактора активная зона немедленно заливается раствором борной кислоты, что приводит к мгновенной остановке ядерной реакции. Перед выводом на рынок систему планируется усилить – оснастить системой контроля, которая будет вести мониторинг в режиме реального времени и отправлять все данные через Wi-Fi на компьютер или смартфон владельца.

Без перезарядки разработанный новосибирскими учеными ректор может проработать шестьдесят лет. После этого устройство необходимо будет утилизировать. Эту услугу планируется оказывать на базе института.

Точная стоимость установки пока не называется, однако ученые уверены, что в будущем домашний ядерный ректор станет доступен практически для каждой российской семьи. Источник в институте сообщил что в продаже реактор может появиться по цене в 150 тысяч рублей. Начало продаж запланировано на 2016 год – после завершения всех испытаний и получения сертификатов, подтверждающих безопасность устройства.

(Первоапрельские новости, ничего общего с действительным положением вещей не имеющие.)

Мы стремимся поставлять своим клиентам самое лучшее, самое современное, самое технологичное оборудование. И сейчас рады вам сообщить, что ассортимент «Русской Генераторной Компании» пополнился уникальной, не имеющей аналогов новинкой - первым в мире Портативным Атомным Генератором ПАГ-300 -1АПР . Работы над проектом по созданию новинки велись в течение пяти лет, нашим инженерам активно оказывали помощь сотрудники РОСАТОМ.

Что же собой представляет новинка? Это достаточно компактное устройство, его габариты сравнимы с размером обеденного стола, а масса не достигает и 5 т. Оснастив ПАГ комплектом колес и ручек, вы сможете с удобством и легкостью перевозить его с объекта на объект. Благодаря использованию изотопов урана-325 в качестве топлива, ПАГ сможет в течение трех с лишним лет обеспечивать электроэнергией сеть с большой нагрузкой. И это - без дозаправки, в автономном режиме. При этом его мощность достигает 330 кВт, что на порядок больше чем могут предложить флагманские модели дизельных и газовых аналогов. Это - отличный способ обеспечить электричеством не только квартиру или отдельно стоящий дом, но и коттеджный поселок, промышленный объект, подземный бункер.

Разумеется, весьма актуален вопрос безопасности. Хотим вас заверить, что радиационный фон вокруг установки не выходит за пределы допустимой нормы: ПАГ гарантированно не станет дополнительным источником заражения среды и причиной развития мутаций. Более того, за счет отсутствия в ее составе двигателя внутреннего сгорания такая установка более экологична, чем бензо- и дизельгенераторы!

Основные характеристики ПАГ-300-1АПР
Тип электростанции атомная
Тип запуска электронный
Число фаз 3 (380 вольт)
Двигатель и топливо
Двигатель ПАД-300-1АПР
Тип охлаждения D 2 O (тяжелая вода)
Марка топлива изотопы урана 235
Время автономной работы 3.2 года
Генератор
Тип генератора синхронный
Бесщеточный генератор да
Класс защиты генератора IP66
Активная мощность 300 кВт
Максимальная мощность 330 кВт
Конструкция и особенности
Уровень шума 5 дБ
Колеса нет
Защита от перегрузок есть
Число розеток 380 В 6
Габариты (ШхВхГ) 2400x910x860 мм
Вес 4563 кг
Особенности комплект колёс и ручек приобретается отдельно

Узнать больше подробностей о ПАГ-300-1АПР вы можете у наших менеджеров или представителей госкорпорации «Росатом». Оптовым покупателям мы предоставим скидку!

Вы, конечно, поняли что это первоапрельская шутка:) А вот здесь реально существовавшая